{"title":"基于卷积神经网络的脑组织分割","authors":"Zeyu Sun, Juhua Zhang","doi":"10.1109/CISP-BMEI.2017.8301979","DOIUrl":null,"url":null,"abstract":"With the development and improvement of imaging technology in the medical field, image technology, which provides important scientific basis for disease analysis, has become an indispensable part of disease diagnosis. Therefore, how to dig out valuable information in these images and help doctors to make diagnosis more accurately and quickly have always been the concern of researchers. In this paper, we have made some improvements to the FCN network and incorporated Inception Architecture into it to build several convolutional neural networks. In our experiments, we trained the networks in IBSR dataset and contrasted the results with some classical methods. The results demonstrate that our improved network has high efficiency and accuracy in segmentation of MRI brain images.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"28 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain tissue segmentation based on convolutional neural networks\",\"authors\":\"Zeyu Sun, Juhua Zhang\",\"doi\":\"10.1109/CISP-BMEI.2017.8301979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development and improvement of imaging technology in the medical field, image technology, which provides important scientific basis for disease analysis, has become an indispensable part of disease diagnosis. Therefore, how to dig out valuable information in these images and help doctors to make diagnosis more accurately and quickly have always been the concern of researchers. In this paper, we have made some improvements to the FCN network and incorporated Inception Architecture into it to build several convolutional neural networks. In our experiments, we trained the networks in IBSR dataset and contrasted the results with some classical methods. The results demonstrate that our improved network has high efficiency and accuracy in segmentation of MRI brain images.\",\"PeriodicalId\":6474,\"journal\":{\"name\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"28 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2017.8301979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8301979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brain tissue segmentation based on convolutional neural networks
With the development and improvement of imaging technology in the medical field, image technology, which provides important scientific basis for disease analysis, has become an indispensable part of disease diagnosis. Therefore, how to dig out valuable information in these images and help doctors to make diagnosis more accurately and quickly have always been the concern of researchers. In this paper, we have made some improvements to the FCN network and incorporated Inception Architecture into it to build several convolutional neural networks. In our experiments, we trained the networks in IBSR dataset and contrasted the results with some classical methods. The results demonstrate that our improved network has high efficiency and accuracy in segmentation of MRI brain images.