{"title":"关于空间_p上具有p =[1;+∞]的强分离连续函数的若干注释","authors":"O. Karlova, T. Visnyai","doi":"10.15673/TMGC.V10I3-4.769","DOIUrl":null,"url":null,"abstract":"We give a sufficient condition on strongly separately continuousfunction f to be continuous on space ℓ_p for p ∊ 2 [1;+∞]. We prove theexistence of an ssc function f : ℓ_∞ → R which is not Baire measurable.We show that any open set in ℓ_p is the set of discontinuities of a stronglyseparately continuous real-valued function for p ∊ [1;+∞).","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some remarks concerning strongly separately continuous functions on spaces ℓ_p with p ∊ [1;+∞]\",\"authors\":\"O. Karlova, T. Visnyai\",\"doi\":\"10.15673/TMGC.V10I3-4.769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a sufficient condition on strongly separately continuousfunction f to be continuous on space ℓ_p for p ∊ 2 [1;+∞]. We prove theexistence of an ssc function f : ℓ_∞ → R which is not Baire measurable.We show that any open set in ℓ_p is the set of discontinuities of a stronglyseparately continuous real-valued function for p ∊ [1;+∞).\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/TMGC.V10I3-4.769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V10I3-4.769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Some remarks concerning strongly separately continuous functions on spaces ℓ_p with p ∊ [1;+∞]
We give a sufficient condition on strongly separately continuousfunction f to be continuous on space ℓ_p for p ∊ 2 [1;+∞]. We prove theexistence of an ssc function f : ℓ_∞ → R which is not Baire measurable.We show that any open set in ℓ_p is the set of discontinuities of a stronglyseparately continuous real-valued function for p ∊ [1;+∞).