心电图建模中的偏微分方程和偏微分方程耦合系统

M. Boulakia, M. Fernández, Jean-Frédéric Gerbeau, N. Zemzemi
{"title":"心电图建模中的偏微分方程和偏微分方程耦合系统","authors":"M. Boulakia, M. Fernández, Jean-Frédéric Gerbeau, N. Zemzemi","doi":"10.1093/AMRX/ABN002","DOIUrl":null,"url":null,"abstract":"We study the well-posedness of a coupled system of PDEs and ODEs arising in the numerical simulation of electrocardiograms. It consists of a system of degenerate reaction-diffusion equations, the so-called bidomain equations, governing the electrical activity of the heart, and a diffusion equation governing the potential in the surrounding tissues. Global existence of weak solutions is proved for an abstract class of ionic models including Mitchell-Schaeffer, FitzHugh-Nagumo, Aliev-Panfilov and MacCulloch. Uniqueness is proved in the case of the FitzHugh-Nagumo ionic model. The proof is based on a regularisation argument with a Faedo-Galerkin/compactness procedure.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"75 1","pages":"24"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"A Coupled System of PDEs and ODEs Arising in Electrocardiograms Modeling\",\"authors\":\"M. Boulakia, M. Fernández, Jean-Frédéric Gerbeau, N. Zemzemi\",\"doi\":\"10.1093/AMRX/ABN002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the well-posedness of a coupled system of PDEs and ODEs arising in the numerical simulation of electrocardiograms. It consists of a system of degenerate reaction-diffusion equations, the so-called bidomain equations, governing the electrical activity of the heart, and a diffusion equation governing the potential in the surrounding tissues. Global existence of weak solutions is proved for an abstract class of ionic models including Mitchell-Schaeffer, FitzHugh-Nagumo, Aliev-Panfilov and MacCulloch. Uniqueness is proved in the case of the FitzHugh-Nagumo ionic model. The proof is based on a regularisation argument with a Faedo-Galerkin/compactness procedure.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"75 1\",\"pages\":\"24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABN002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABN002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

我们研究了在心电图数值模拟中出现的偏微分方程和偏微分方程耦合系统的适定性。它包括一个简并反应扩散方程系统,即所谓的双域方程,控制心脏的电活动,以及一个控制周围组织电位的扩散方程。证明了一类离子模型(包括Mitchell-Schaeffer、FitzHugh-Nagumo、Aliev-Panfilov和MacCulloch)弱解的整体存在性。证明了FitzHugh-Nagumo离子模型的唯一性。证明是基于正则化论证与Faedo-Galerkin/紧性过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Coupled System of PDEs and ODEs Arising in Electrocardiograms Modeling
We study the well-posedness of a coupled system of PDEs and ODEs arising in the numerical simulation of electrocardiograms. It consists of a system of degenerate reaction-diffusion equations, the so-called bidomain equations, governing the electrical activity of the heart, and a diffusion equation governing the potential in the surrounding tissues. Global existence of weak solutions is proved for an abstract class of ionic models including Mitchell-Schaeffer, FitzHugh-Nagumo, Aliev-Panfilov and MacCulloch. Uniqueness is proved in the case of the FitzHugh-Nagumo ionic model. The proof is based on a regularisation argument with a Faedo-Galerkin/compactness procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信