{"title":"探索有效动作分类的判别姿势子模式","authors":"Xu Zhao, Yuncai Liu, Yun Fu","doi":"10.1145/2502081.2502094","DOIUrl":null,"url":null,"abstract":"Articulated configuration of human body parts is an essential representation of human motion, therefore is well suited for classifying human actions. In this work, we propose a novel approach to exploring the discriminative pose sub-patterns for effective action classification. These pose sub-patterns are extracted from a predefined set of 3D poses represented by hierarchical motion angles. The basic idea is motivated by the two observations: (1) There exist representative sub-patterns in each action class, from which the action class can be easily differentiated. (2) These sub-patterns frequently appear in the action class. By constructing a connection between frequent sub-patterns and the discriminative measure, we develop the SSPI, namely, the Support Sub-Pattern Induced learning algorithm for simultaneous feature selection and feature learning. Based on the algorithm, discriminative pose sub-patterns can be identified and used as a series of \"magnetic centers\" on the surface of normalized super-sphere for feature transform. The \"attractive forces\" from the sub-patterns determine the direction and step-length of the transform. This transformation makes a feature more discriminative while maintaining dimensionality invariance. Comprehensive experimental studies conducted on a large scale motion capture dataset demonstrate the effectiveness of the proposed approach for action classification and the superior performance over the state-of-the-art techniques.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Exploring discriminative pose sub-patterns for effective action classification\",\"authors\":\"Xu Zhao, Yuncai Liu, Yun Fu\",\"doi\":\"10.1145/2502081.2502094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Articulated configuration of human body parts is an essential representation of human motion, therefore is well suited for classifying human actions. In this work, we propose a novel approach to exploring the discriminative pose sub-patterns for effective action classification. These pose sub-patterns are extracted from a predefined set of 3D poses represented by hierarchical motion angles. The basic idea is motivated by the two observations: (1) There exist representative sub-patterns in each action class, from which the action class can be easily differentiated. (2) These sub-patterns frequently appear in the action class. By constructing a connection between frequent sub-patterns and the discriminative measure, we develop the SSPI, namely, the Support Sub-Pattern Induced learning algorithm for simultaneous feature selection and feature learning. Based on the algorithm, discriminative pose sub-patterns can be identified and used as a series of \\\"magnetic centers\\\" on the surface of normalized super-sphere for feature transform. The \\\"attractive forces\\\" from the sub-patterns determine the direction and step-length of the transform. This transformation makes a feature more discriminative while maintaining dimensionality invariance. Comprehensive experimental studies conducted on a large scale motion capture dataset demonstrate the effectiveness of the proposed approach for action classification and the superior performance over the state-of-the-art techniques.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring discriminative pose sub-patterns for effective action classification
Articulated configuration of human body parts is an essential representation of human motion, therefore is well suited for classifying human actions. In this work, we propose a novel approach to exploring the discriminative pose sub-patterns for effective action classification. These pose sub-patterns are extracted from a predefined set of 3D poses represented by hierarchical motion angles. The basic idea is motivated by the two observations: (1) There exist representative sub-patterns in each action class, from which the action class can be easily differentiated. (2) These sub-patterns frequently appear in the action class. By constructing a connection between frequent sub-patterns and the discriminative measure, we develop the SSPI, namely, the Support Sub-Pattern Induced learning algorithm for simultaneous feature selection and feature learning. Based on the algorithm, discriminative pose sub-patterns can be identified and used as a series of "magnetic centers" on the surface of normalized super-sphere for feature transform. The "attractive forces" from the sub-patterns determine the direction and step-length of the transform. This transformation makes a feature more discriminative while maintaining dimensionality invariance. Comprehensive experimental studies conducted on a large scale motion capture dataset demonstrate the effectiveness of the proposed approach for action classification and the superior performance over the state-of-the-art techniques.