Stiefel流形上的贝叶斯非参数推理

Lizhen Lin, Vinayak A. Rao, D. Dunson
{"title":"Stiefel流形上的贝叶斯非参数推理","authors":"Lizhen Lin, Vinayak A. Rao, D. Dunson","doi":"10.5705/SS.202016.0017","DOIUrl":null,"url":null,"abstract":"The Stiefel manifold $V_{p,d}$ is the space of all $d \\times p$ orthonormal matrices, with the $d-1$ hypersphere and the space of all orthogonal matrices constituting special cases. In modeling data lying on the Stiefel manifold, parametric distributions such as the matrix Langevin distribution are often used; however, model misspecification is a concern and it is desirable to have nonparametric alternatives. Current nonparametric methods are Frechet mean based. We take a fully generative nonparametric approach, which relies on mixing parametric kernels such as the matrix Langevin. The proposed kernel mixtures can approximate a large class of distributions on the Stiefel manifold, and we develop theory showing posterior consistency. While there exists work developing general posterior consistency results, extending these results to this particular manifold requires substantial new theory. Posterior inference is illustrated on a real-world dataset of near-Earth objects.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Bayesian nonparametric inference on the Stiefel manifold\",\"authors\":\"Lizhen Lin, Vinayak A. Rao, D. Dunson\",\"doi\":\"10.5705/SS.202016.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Stiefel manifold $V_{p,d}$ is the space of all $d \\\\times p$ orthonormal matrices, with the $d-1$ hypersphere and the space of all orthogonal matrices constituting special cases. In modeling data lying on the Stiefel manifold, parametric distributions such as the matrix Langevin distribution are often used; however, model misspecification is a concern and it is desirable to have nonparametric alternatives. Current nonparametric methods are Frechet mean based. We take a fully generative nonparametric approach, which relies on mixing parametric kernels such as the matrix Langevin. The proposed kernel mixtures can approximate a large class of distributions on the Stiefel manifold, and we develop theory showing posterior consistency. While there exists work developing general posterior consistency results, extending these results to this particular manifold requires substantial new theory. Posterior inference is illustrated on a real-world dataset of near-Earth objects.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5705/SS.202016.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5705/SS.202016.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

Stiefel流形$V_{p,d}$是所有$d \乘以p$正交矩阵的空间,其中$d-1$超球和所有正交矩阵的空间构成特殊情况。在对Stiefel流形上的数据建模时,经常使用参数分布,如矩阵朗格万分布;然而,模型规范错误是一个问题,需要有非参数替代方案。目前的非参数方法是基于Frechet均值的。我们采用了一种完全生成的非参数方法,它依赖于混合参数核,如矩阵朗格万。所提出的核混合可以近似Stiefel流形上的一大类分布,并且我们发展了显示后验一致性的理论。虽然已经有了发展一般后验一致性结果的工作,但将这些结果推广到这个特殊的流形需要大量的新理论。后验推理在近地天体的真实数据集上进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian nonparametric inference on the Stiefel manifold
The Stiefel manifold $V_{p,d}$ is the space of all $d \times p$ orthonormal matrices, with the $d-1$ hypersphere and the space of all orthogonal matrices constituting special cases. In modeling data lying on the Stiefel manifold, parametric distributions such as the matrix Langevin distribution are often used; however, model misspecification is a concern and it is desirable to have nonparametric alternatives. Current nonparametric methods are Frechet mean based. We take a fully generative nonparametric approach, which relies on mixing parametric kernels such as the matrix Langevin. The proposed kernel mixtures can approximate a large class of distributions on the Stiefel manifold, and we develop theory showing posterior consistency. While there exists work developing general posterior consistency results, extending these results to this particular manifold requires substantial new theory. Posterior inference is illustrated on a real-world dataset of near-Earth objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信