{"title":"随机增量算法中的并行性","authors":"G. Blelloch, Yan Gu, Julian Shun, Yihan Sun","doi":"10.1145/3402819","DOIUrl":null,"url":null,"abstract":"In this article, we show that many sequential randomized incremental algorithms are in fact parallel. We consider algorithms for several problems, including Delaunay triangulation, linear programming, closest pair, smallest enclosing disk, least-element lists, and strongly connected components. We analyze the dependencies between iterations in an algorithm and show that the dependence structure is shallow with high probability or that, by violating some dependencies, the structure is shallow and the work is not increased significantly. We identify three types of algorithms based on their dependencies and present a framework for analyzing each type. Using the framework gives work-efficient polylogarithmic-depth parallel algorithms for most of the problems that we study. This article shows the first incremental Delaunay triangulation algorithm with optimal work and polylogarithmic depth. This result is important, since most implementations of parallel Delaunay triangulation use the incremental approach. Our results also improve bounds on strongly connected components and least-element lists and significantly simplify parallel algorithms for several problems.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"22 1","pages":"1 - 27"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Parallelism in Randomized Incremental Algorithms\",\"authors\":\"G. Blelloch, Yan Gu, Julian Shun, Yihan Sun\",\"doi\":\"10.1145/3402819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we show that many sequential randomized incremental algorithms are in fact parallel. We consider algorithms for several problems, including Delaunay triangulation, linear programming, closest pair, smallest enclosing disk, least-element lists, and strongly connected components. We analyze the dependencies between iterations in an algorithm and show that the dependence structure is shallow with high probability or that, by violating some dependencies, the structure is shallow and the work is not increased significantly. We identify three types of algorithms based on their dependencies and present a framework for analyzing each type. Using the framework gives work-efficient polylogarithmic-depth parallel algorithms for most of the problems that we study. This article shows the first incremental Delaunay triangulation algorithm with optimal work and polylogarithmic depth. This result is important, since most implementations of parallel Delaunay triangulation use the incremental approach. Our results also improve bounds on strongly connected components and least-element lists and significantly simplify parallel algorithms for several problems.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"22 1\",\"pages\":\"1 - 27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3402819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3402819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article, we show that many sequential randomized incremental algorithms are in fact parallel. We consider algorithms for several problems, including Delaunay triangulation, linear programming, closest pair, smallest enclosing disk, least-element lists, and strongly connected components. We analyze the dependencies between iterations in an algorithm and show that the dependence structure is shallow with high probability or that, by violating some dependencies, the structure is shallow and the work is not increased significantly. We identify three types of algorithms based on their dependencies and present a framework for analyzing each type. Using the framework gives work-efficient polylogarithmic-depth parallel algorithms for most of the problems that we study. This article shows the first incremental Delaunay triangulation algorithm with optimal work and polylogarithmic depth. This result is important, since most implementations of parallel Delaunay triangulation use the incremental approach. Our results also improve bounds on strongly connected components and least-element lists and significantly simplify parallel algorithms for several problems.