A. D. Lordon, M. Yossa, C. M. Agyingi, Yves Shandini, Thierry Stephane kuisseu
{"title":"喀麦隆Mamfe盆地的几何特征,来自地球引力模型(EGM 2008)","authors":"A. D. Lordon, M. Yossa, C. M. Agyingi, Yves Shandini, Thierry Stephane kuisseu","doi":"10.5539/ESR.V7N1P94","DOIUrl":null,"url":null,"abstract":"Gravimetric studies using the ETOPO1-corrected high resolution satellite-based EGM2008 gravity data was used to define the surface extent, depth to basement and shape of the Mamfe basin. The Bouguer anomaly map was produced in Surfer 11.0. The Fast Fourier Transformed data was analyzed by spectral analysis to remove the effect of the regional bodies in the study area. The residual anomaly map obtained was compared with the known geology of the study area, and this showed that the gravity highs correspond to the metamorphic and igneous rocks while the gravity lows match with Cretaceous sediments. Three profiles were drawn on the residual anomaly map along which 2D models of the Mamfe basin were drawn. The modeling was completed in Grav2dc v2.06 software which uses the Talwini’s algorithm and the resulting models gave the depth to basement and the shape of the basement along the profiles. After processing and interpretation, it was deduced that the Mamfe basin has an average length and width of 77.6 km and 29.2 km respectively, an average depth to basement of 5 km and an overall U-shape basement. These dimensions (especially the depth) theoretically create the depth and temperature conditions for petroleum generation.","PeriodicalId":11486,"journal":{"name":"Earth Science Research","volume":"7 1","pages":"94"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Geometrical Characterisation of the Mamfe Basin, Cameroon, from the Earth, Gravitational Model (EGM 2008)\",\"authors\":\"A. D. Lordon, M. Yossa, C. M. Agyingi, Yves Shandini, Thierry Stephane kuisseu\",\"doi\":\"10.5539/ESR.V7N1P94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravimetric studies using the ETOPO1-corrected high resolution satellite-based EGM2008 gravity data was used to define the surface extent, depth to basement and shape of the Mamfe basin. The Bouguer anomaly map was produced in Surfer 11.0. The Fast Fourier Transformed data was analyzed by spectral analysis to remove the effect of the regional bodies in the study area. The residual anomaly map obtained was compared with the known geology of the study area, and this showed that the gravity highs correspond to the metamorphic and igneous rocks while the gravity lows match with Cretaceous sediments. Three profiles were drawn on the residual anomaly map along which 2D models of the Mamfe basin were drawn. The modeling was completed in Grav2dc v2.06 software which uses the Talwini’s algorithm and the resulting models gave the depth to basement and the shape of the basement along the profiles. After processing and interpretation, it was deduced that the Mamfe basin has an average length and width of 77.6 km and 29.2 km respectively, an average depth to basement of 5 km and an overall U-shape basement. These dimensions (especially the depth) theoretically create the depth and temperature conditions for petroleum generation.\",\"PeriodicalId\":11486,\"journal\":{\"name\":\"Earth Science Research\",\"volume\":\"7 1\",\"pages\":\"94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ESR.V7N1P94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ESR.V7N1P94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometrical Characterisation of the Mamfe Basin, Cameroon, from the Earth, Gravitational Model (EGM 2008)
Gravimetric studies using the ETOPO1-corrected high resolution satellite-based EGM2008 gravity data was used to define the surface extent, depth to basement and shape of the Mamfe basin. The Bouguer anomaly map was produced in Surfer 11.0. The Fast Fourier Transformed data was analyzed by spectral analysis to remove the effect of the regional bodies in the study area. The residual anomaly map obtained was compared with the known geology of the study area, and this showed that the gravity highs correspond to the metamorphic and igneous rocks while the gravity lows match with Cretaceous sediments. Three profiles were drawn on the residual anomaly map along which 2D models of the Mamfe basin were drawn. The modeling was completed in Grav2dc v2.06 software which uses the Talwini’s algorithm and the resulting models gave the depth to basement and the shape of the basement along the profiles. After processing and interpretation, it was deduced that the Mamfe basin has an average length and width of 77.6 km and 29.2 km respectively, an average depth to basement of 5 km and an overall U-shape basement. These dimensions (especially the depth) theoretically create the depth and temperature conditions for petroleum generation.