对流扩散方程部分数据反问题的稳定性估计

IF 1.3 4区 数学 Q1 MATHEMATICS
Soumen Senapati, Manmohan Vashisth
{"title":"对流扩散方程部分数据反问题的稳定性估计","authors":"Soumen Senapati, Manmohan Vashisth","doi":"10.3934/eect.2021060","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this article, we study the stability in the inverse problem of determining the time-dependent convection term and density coefficient appearing in the convection-diffusion equation, from partial boundary measurements. For dimension <inline-formula><tex-math id=\"M1\">\\begin{document}$ n\\ge 2 $\\end{document}</tex-math></inline-formula>, we show the convection term (modulo the gauge term) admits log-log stability, whereas log-log-log stability estimate is obtained for the density coefficient.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"60 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability estimate for a partial data inverse problem for the convection-diffusion equation\",\"authors\":\"Soumen Senapati, Manmohan Vashisth\",\"doi\":\"10.3934/eect.2021060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this article, we study the stability in the inverse problem of determining the time-dependent convection term and density coefficient appearing in the convection-diffusion equation, from partial boundary measurements. For dimension <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ n\\\\ge 2 $\\\\end{document}</tex-math></inline-formula>, we show the convection term (modulo the gauge term) admits log-log stability, whereas log-log-log stability estimate is obtained for the density coefficient.</p>\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2021060\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2021060","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

In this article, we study the stability in the inverse problem of determining the time-dependent convection term and density coefficient appearing in the convection-diffusion equation, from partial boundary measurements. For dimension \begin{document}$ n\ge 2 $\end{document}, we show the convection term (modulo the gauge term) admits log-log stability, whereas log-log-log stability estimate is obtained for the density coefficient.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability estimate for a partial data inverse problem for the convection-diffusion equation

In this article, we study the stability in the inverse problem of determining the time-dependent convection term and density coefficient appearing in the convection-diffusion equation, from partial boundary measurements. For dimension \begin{document}$ n\ge 2 $\end{document}, we show the convection term (modulo the gauge term) admits log-log stability, whereas log-log-log stability estimate is obtained for the density coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution Equations and Control Theory
Evolution Equations and Control Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.10
自引率
6.70%
发文量
5
期刊介绍: EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include: * Modeling of physical systems as infinite-dimensional processes * Direct problems such as existence, regularity and well-posedness * Stability, long-time behavior and associated dynamical attractors * Indirect problems such as exact controllability, reachability theory and inverse problems * Optimization - including shape optimization - optimal control, game theory and calculus of variations * Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s) * Applications of the theory to physics, chemistry, engineering, economics, medicine and biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信