基于APSO-SD优化的BiLSTM神经网络的5G用户时延预测模型

Xiaozheng Dang, Di He, Cong Xie
{"title":"基于APSO-SD优化的BiLSTM神经网络的5G用户时延预测模型","authors":"Xiaozheng Dang, Di He, Cong Xie","doi":"10.1155/2023/4137614","DOIUrl":null,"url":null,"abstract":"To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on three-dimensional stereo mapping is proposed for input feature extraction. Then, an adaptive particle swarm optimization algorithm based on a search perturbation mechanism and differential enhancement strategy (APSO-SD) is proposed for the parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTM model is proposed to predict the time delay of 5G users. The experimental results show that the APSO-SD has a better convergence performance and optimization performance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has better user time delay prediction accuracy in different scenarios.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":"8 1","pages":"4137614:1-4137614:20"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Time Delay Prediction Model of 5G Users Based on the BiLSTM Neural Network Optimized by APSO-SD\",\"authors\":\"Xiaozheng Dang, Di He, Cong Xie\",\"doi\":\"10.1155/2023/4137614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on three-dimensional stereo mapping is proposed for input feature extraction. Then, an adaptive particle swarm optimization algorithm based on a search perturbation mechanism and differential enhancement strategy (APSO-SD) is proposed for the parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTM model is proposed to predict the time delay of 5G users. The experimental results show that the APSO-SD has a better convergence performance and optimization performance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has better user time delay prediction accuracy in different scenarios.\",\"PeriodicalId\":23352,\"journal\":{\"name\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"volume\":\"8 1\",\"pages\":\"4137614:1-4137614:20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4137614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4137614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对5G网络规划与优化问题,提出了一种基于APSO-SD优化的BiLSTM神经网络的5G用户时延预测模型。首先,构建基于光线追踪模型和统计通道模型的通道生成模型,获取大量时延数据,并提出基于三维立体映射的5G用户光线数据特征模型,用于输入特征提取。然后,提出了一种基于搜索摄动机制和差分增强策略(APSO-SD)的自适应粒子群优化算法,用于BiLSTM神经网络的参数优化。最后,提出了预测5G用户时延的APSO-SD-BiLSTM模型。实验结果表明,与其他PSO算法相比,APSO-SD在基准函数优化方面具有更好的收敛性能和优化性能,并且APSO-SD- bilstm模型在不同场景下具有更好的用户时延预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Time Delay Prediction Model of 5G Users Based on the BiLSTM Neural Network Optimized by APSO-SD
To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on three-dimensional stereo mapping is proposed for input feature extraction. Then, an adaptive particle swarm optimization algorithm based on a search perturbation mechanism and differential enhancement strategy (APSO-SD) is proposed for the parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTM model is proposed to predict the time delay of 5G users. The experimental results show that the APSO-SD has a better convergence performance and optimization performance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has better user time delay prediction accuracy in different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信