Alessandro Montaldo, L. Fronda, Ihsen Hedhli, G. Moser, J. Zerubia, S. Serpico
{"title":"基于多尺度马尔可夫网格模型的多分辨率多传感器数据联合分类","authors":"Alessandro Montaldo, L. Fronda, Ihsen Hedhli, G. Moser, J. Zerubia, S. Serpico","doi":"10.1109/IGARSS.2019.8898060","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of the classification of multiresolution and multisensor remotely sensed data is addressed by proposing a multiscale Markov mesh model. Multiresolution and multisensor fusion are jointly achieved through an explicitly hierarchical probabilistic graphical classifier, which uses a quadtree structure to model the interactions across different spatial resolutions, and a symmetric Markov mesh random field to deal with contextual information at each scale and favor applicability to very high resolution imagery. Differently from previous hierarchical Markovian approaches, here, data collected by distinct sensors are fused through either the graph topology itself (across its layers) or decision tree ensemble methods (within each layer). The proposed model allows taking benefit of strong analytical properties, most remarkably causality, which make it possible to apply time-efficient non-iterative inference algorithms.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"4 1","pages":"2810-2813"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Joint Classification of Multiresolution and Multisensor Data Using a Multiscale Markov Mesh Model\",\"authors\":\"Alessandro Montaldo, L. Fronda, Ihsen Hedhli, G. Moser, J. Zerubia, S. Serpico\",\"doi\":\"10.1109/IGARSS.2019.8898060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of the classification of multiresolution and multisensor remotely sensed data is addressed by proposing a multiscale Markov mesh model. Multiresolution and multisensor fusion are jointly achieved through an explicitly hierarchical probabilistic graphical classifier, which uses a quadtree structure to model the interactions across different spatial resolutions, and a symmetric Markov mesh random field to deal with contextual information at each scale and favor applicability to very high resolution imagery. Differently from previous hierarchical Markovian approaches, here, data collected by distinct sensors are fused through either the graph topology itself (across its layers) or decision tree ensemble methods (within each layer). The proposed model allows taking benefit of strong analytical properties, most remarkably causality, which make it possible to apply time-efficient non-iterative inference algorithms.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"4 1\",\"pages\":\"2810-2813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Classification of Multiresolution and Multisensor Data Using a Multiscale Markov Mesh Model
In this paper, the problem of the classification of multiresolution and multisensor remotely sensed data is addressed by proposing a multiscale Markov mesh model. Multiresolution and multisensor fusion are jointly achieved through an explicitly hierarchical probabilistic graphical classifier, which uses a quadtree structure to model the interactions across different spatial resolutions, and a symmetric Markov mesh random field to deal with contextual information at each scale and favor applicability to very high resolution imagery. Differently from previous hierarchical Markovian approaches, here, data collected by distinct sensors are fused through either the graph topology itself (across its layers) or decision tree ensemble methods (within each layer). The proposed model allows taking benefit of strong analytical properties, most remarkably causality, which make it possible to apply time-efficient non-iterative inference algorithms.