基于多尺度马尔可夫网格模型的多分辨率多传感器数据联合分类

Alessandro Montaldo, L. Fronda, Ihsen Hedhli, G. Moser, J. Zerubia, S. Serpico
{"title":"基于多尺度马尔可夫网格模型的多分辨率多传感器数据联合分类","authors":"Alessandro Montaldo, L. Fronda, Ihsen Hedhli, G. Moser, J. Zerubia, S. Serpico","doi":"10.1109/IGARSS.2019.8898060","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of the classification of multiresolution and multisensor remotely sensed data is addressed by proposing a multiscale Markov mesh model. Multiresolution and multisensor fusion are jointly achieved through an explicitly hierarchical probabilistic graphical classifier, which uses a quadtree structure to model the interactions across different spatial resolutions, and a symmetric Markov mesh random field to deal with contextual information at each scale and favor applicability to very high resolution imagery. Differently from previous hierarchical Markovian approaches, here, data collected by distinct sensors are fused through either the graph topology itself (across its layers) or decision tree ensemble methods (within each layer). The proposed model allows taking benefit of strong analytical properties, most remarkably causality, which make it possible to apply time-efficient non-iterative inference algorithms.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"4 1","pages":"2810-2813"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Joint Classification of Multiresolution and Multisensor Data Using a Multiscale Markov Mesh Model\",\"authors\":\"Alessandro Montaldo, L. Fronda, Ihsen Hedhli, G. Moser, J. Zerubia, S. Serpico\",\"doi\":\"10.1109/IGARSS.2019.8898060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of the classification of multiresolution and multisensor remotely sensed data is addressed by proposing a multiscale Markov mesh model. Multiresolution and multisensor fusion are jointly achieved through an explicitly hierarchical probabilistic graphical classifier, which uses a quadtree structure to model the interactions across different spatial resolutions, and a symmetric Markov mesh random field to deal with contextual information at each scale and favor applicability to very high resolution imagery. Differently from previous hierarchical Markovian approaches, here, data collected by distinct sensors are fused through either the graph topology itself (across its layers) or decision tree ensemble methods (within each layer). The proposed model allows taking benefit of strong analytical properties, most remarkably causality, which make it possible to apply time-efficient non-iterative inference algorithms.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"4 1\",\"pages\":\"2810-2813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文通过提出一种多尺度马尔可夫网格模型,解决了多分辨率、多传感器遥感数据的分类问题。多分辨率和多传感器融合是通过显式分层概率图形分类器共同实现的,该分类器使用四叉树结构来模拟不同空间分辨率的相互作用,并使用对称马尔可夫网格随机场来处理每个尺度的上下文信息,有利于适用于非常高分辨率的图像。与以前的分层马尔可夫方法不同,这里,不同传感器收集的数据通过图拓扑本身(跨其层)或决策树集成方法(在每层内)进行融合。所提出的模型允许利用强大的分析性质,最显著的因果关系,这使得应用时间高效的非迭代推理算法成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Classification of Multiresolution and Multisensor Data Using a Multiscale Markov Mesh Model
In this paper, the problem of the classification of multiresolution and multisensor remotely sensed data is addressed by proposing a multiscale Markov mesh model. Multiresolution and multisensor fusion are jointly achieved through an explicitly hierarchical probabilistic graphical classifier, which uses a quadtree structure to model the interactions across different spatial resolutions, and a symmetric Markov mesh random field to deal with contextual information at each scale and favor applicability to very high resolution imagery. Differently from previous hierarchical Markovian approaches, here, data collected by distinct sensors are fused through either the graph topology itself (across its layers) or decision tree ensemble methods (within each layer). The proposed model allows taking benefit of strong analytical properties, most remarkably causality, which make it possible to apply time-efficient non-iterative inference algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信