{"title":"梯度下降多分割本体算法的学习率","authors":"Jianzhang Wu, X. Yu, Wei Gao","doi":"10.1504/IJMTM.2014.066699","DOIUrl":null,"url":null,"abstract":"As acknowledge representation model, ontology has wide applications in information retrieval and other disciplines. Ontology concept similarity calculation is a key issue in these applications. One approach for ontology application is to learn an optimal ontology score function which maps each vertex in graph into a real-value. And the similarity between vertices is measured by the difference of their corresponding scores. The multi-dividing ontology algorithm is an ontology learning trick such that the model divides ontology vertices into k parts correspond to the k classes of rates. In this paper, we propose the gradient descent multi-dividing ontology algorithm based on iterative gradient computation and yield the learning rates with general convex losses by virtue of the suitable step size and regularisation parameter selection.","PeriodicalId":38792,"journal":{"name":"International Journal of Manufacturing Technology and Management","volume":"5 1","pages":"217-230"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning rate of gradient descent multi-dividing ontology algorithm\",\"authors\":\"Jianzhang Wu, X. Yu, Wei Gao\",\"doi\":\"10.1504/IJMTM.2014.066699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As acknowledge representation model, ontology has wide applications in information retrieval and other disciplines. Ontology concept similarity calculation is a key issue in these applications. One approach for ontology application is to learn an optimal ontology score function which maps each vertex in graph into a real-value. And the similarity between vertices is measured by the difference of their corresponding scores. The multi-dividing ontology algorithm is an ontology learning trick such that the model divides ontology vertices into k parts correspond to the k classes of rates. In this paper, we propose the gradient descent multi-dividing ontology algorithm based on iterative gradient computation and yield the learning rates with general convex losses by virtue of the suitable step size and regularisation parameter selection.\",\"PeriodicalId\":38792,\"journal\":{\"name\":\"International Journal of Manufacturing Technology and Management\",\"volume\":\"5 1\",\"pages\":\"217-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Manufacturing Technology and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMTM.2014.066699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Manufacturing Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMTM.2014.066699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Learning rate of gradient descent multi-dividing ontology algorithm
As acknowledge representation model, ontology has wide applications in information retrieval and other disciplines. Ontology concept similarity calculation is a key issue in these applications. One approach for ontology application is to learn an optimal ontology score function which maps each vertex in graph into a real-value. And the similarity between vertices is measured by the difference of their corresponding scores. The multi-dividing ontology algorithm is an ontology learning trick such that the model divides ontology vertices into k parts correspond to the k classes of rates. In this paper, we propose the gradient descent multi-dividing ontology algorithm based on iterative gradient computation and yield the learning rates with general convex losses by virtue of the suitable step size and regularisation parameter selection.