基于Procrustes形状分析的步态识别

Liang Wang, Huazhong Ning, Weiming Hu, T. Tan
{"title":"基于Procrustes形状分析的步态识别","authors":"Liang Wang, Huazhong Ning, Weiming Hu, T. Tan","doi":"10.1109/ICIP.2002.1038998","DOIUrl":null,"url":null,"abstract":"Gait recognition has recently attracted increasing attention, especially in vision-based human identification-at-a-distance in visual surveillance. The paper proposes a simple but efficient gait recognition algorithm, based on statistical shape analysis. For each gait sequence, a background subtraction procedure is used to segment spatial silhouettes of the walking figures from the background. Static pose changes of these silhouettes over time are represented as a sequence of associated complex configurations in a common coordinate, and are then analyzed using the Procrustes shape analysis method to obtain a gait signature. The k-nearest neighbor classifier and the nearest exemplar classifier based on the full Procrustes distance measure are adopted for recognition. Experimental results demonstrate that the proposed algorithm has an encouraging recognition performance.","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"19 1","pages":"III-III"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Gait recognition based on Procrustes shape analysis\",\"authors\":\"Liang Wang, Huazhong Ning, Weiming Hu, T. Tan\",\"doi\":\"10.1109/ICIP.2002.1038998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait recognition has recently attracted increasing attention, especially in vision-based human identification-at-a-distance in visual surveillance. The paper proposes a simple but efficient gait recognition algorithm, based on statistical shape analysis. For each gait sequence, a background subtraction procedure is used to segment spatial silhouettes of the walking figures from the background. Static pose changes of these silhouettes over time are represented as a sequence of associated complex configurations in a common coordinate, and are then analyzed using the Procrustes shape analysis method to obtain a gait signature. The k-nearest neighbor classifier and the nearest exemplar classifier based on the full Procrustes distance measure are adopted for recognition. Experimental results demonstrate that the proposed algorithm has an encouraging recognition performance.\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"19 1\",\"pages\":\"III-III\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2002.1038998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2002.1038998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

近年来,步态识别越来越受到人们的关注,尤其是基于视觉的远距离人体识别。提出了一种基于统计形状分析的简单高效的步态识别算法。对于每个步态序列,使用背景减法将行走人物的空间轮廓从背景中分割出来。这些轮廓的静态姿态随时间的变化在一个共同的坐标中表示为一系列相关的复杂构型,然后使用Procrustes形状分析方法进行分析,从而获得步态特征。采用k近邻分类器和基于全Procrustes距离测度的最近邻样本分类器进行识别。实验结果表明,该算法具有良好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gait recognition based on Procrustes shape analysis
Gait recognition has recently attracted increasing attention, especially in vision-based human identification-at-a-distance in visual surveillance. The paper proposes a simple but efficient gait recognition algorithm, based on statistical shape analysis. For each gait sequence, a background subtraction procedure is used to segment spatial silhouettes of the walking figures from the background. Static pose changes of these silhouettes over time are represented as a sequence of associated complex configurations in a common coordinate, and are then analyzed using the Procrustes shape analysis method to obtain a gait signature. The k-nearest neighbor classifier and the nearest exemplar classifier based on the full Procrustes distance measure are adopted for recognition. Experimental results demonstrate that the proposed algorithm has an encouraging recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信