addHessian:结合准牛顿方法和一阶方法进行神经网络训练

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Sota Yasuda, S. Indrapriyadarsini, H. Ninomiya, T. Kamio, H. Asai
{"title":"addHessian:结合准牛顿方法和一阶方法进行神经网络训练","authors":"Sota Yasuda, S. Indrapriyadarsini, H. Ninomiya, T. Kamio, H. Asai","doi":"10.1587/nolta.13.361","DOIUrl":null,"url":null,"abstract":": First-order methods such as SGD and Adam are popularly used in training Neural networks. On the other hand, second-order methods have shown to have better performance and faster convergence despite their high computational cost by incorporating the curvature information. While second-order methods determine the step size by line search approaches, first-order methods achieve e ffi cient learning by devising a way to adjust the step size. In this paper, we propose a new learning algorithm for training neural networks by combining first-order and second-order methods. We investigate the ef-fectiveness of our proposed method when combined with popular first-order methods - SGD, Adagrad, and Adam, through experiments using image classification problems.","PeriodicalId":54110,"journal":{"name":"IEICE Nonlinear Theory and Its Applications","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"addHessian: Combining quasi-Newton method with first-order method for neural network training\",\"authors\":\"Sota Yasuda, S. Indrapriyadarsini, H. Ninomiya, T. Kamio, H. Asai\",\"doi\":\"10.1587/nolta.13.361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": First-order methods such as SGD and Adam are popularly used in training Neural networks. On the other hand, second-order methods have shown to have better performance and faster convergence despite their high computational cost by incorporating the curvature information. While second-order methods determine the step size by line search approaches, first-order methods achieve e ffi cient learning by devising a way to adjust the step size. In this paper, we propose a new learning algorithm for training neural networks by combining first-order and second-order methods. We investigate the ef-fectiveness of our proposed method when combined with popular first-order methods - SGD, Adagrad, and Adam, through experiments using image classification problems.\",\"PeriodicalId\":54110,\"journal\":{\"name\":\"IEICE Nonlinear Theory and Its Applications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Nonlinear Theory and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/nolta.13.361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Nonlinear Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/nolta.13.361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

一阶方法如SGD和Adam在训练神经网络中被广泛使用。另一方面,二阶方法由于包含曲率信息,虽然计算成本高,但具有更好的性能和更快的收敛速度。二阶方法通过线搜索方法确定步长,而一阶方法通过设计一种调整步长的方法来实现高效学习。本文提出了一种结合一阶和二阶方法的神经网络学习算法。我们通过使用图像分类问题的实验,研究了我们提出的方法与流行的一阶方法(SGD, Adagrad和Adam)相结合的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
addHessian: Combining quasi-Newton method with first-order method for neural network training
: First-order methods such as SGD and Adam are popularly used in training Neural networks. On the other hand, second-order methods have shown to have better performance and faster convergence despite their high computational cost by incorporating the curvature information. While second-order methods determine the step size by line search approaches, first-order methods achieve e ffi cient learning by devising a way to adjust the step size. In this paper, we propose a new learning algorithm for training neural networks by combining first-order and second-order methods. We investigate the ef-fectiveness of our proposed method when combined with popular first-order methods - SGD, Adagrad, and Adam, through experiments using image classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Nonlinear Theory and Its Applications
IEICE Nonlinear Theory and Its Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
20.00%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信