片上网络中高度自适应路由算法的拥塞感知学习模型

M. Ebrahimi, M. Daneshtalab, F. Farahnakian, J. Plosila, P. Liljeberg, M. Palesi, H. Tenhunen
{"title":"片上网络中高度自适应路由算法的拥塞感知学习模型","authors":"M. Ebrahimi, M. Daneshtalab, F. Farahnakian, J. Plosila, P. Liljeberg, M. Palesi, H. Tenhunen","doi":"10.1109/NOCS.2012.10","DOIUrl":null,"url":null,"abstract":"The occurrence of congestion in on-chip networks can severely degrade the performance due to increased message latency. In mesh topology, minimal methods can propagate messages over two directions at each switch. When shortest paths are congested, sending more messages through them can deteriorate the congestion condition considerably. In this paper, we present an adaptive routing algorithm for on-chip networks that provide a wide range of alternative paths between each pair of source and destination switches. Initially, the algorithm determines all permitted turns in the network including 180-degree turns on a single channel without creating cycles. The implementation of the algorithm provides the best usage of all allowable turns to route messages more adaptively in the network. On top of that, for selecting a less congested path, an optimized and scalable learning method is utilized. The learning method is based on local and global congestion information and can estimate the latency from each output channel to the destination region.","PeriodicalId":6333,"journal":{"name":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","volume":"56 1","pages":"19-26"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"HARAQ: Congestion-Aware Learning Model for Highly Adaptive Routing Algorithm in On-Chip Networks\",\"authors\":\"M. Ebrahimi, M. Daneshtalab, F. Farahnakian, J. Plosila, P. Liljeberg, M. Palesi, H. Tenhunen\",\"doi\":\"10.1109/NOCS.2012.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of congestion in on-chip networks can severely degrade the performance due to increased message latency. In mesh topology, minimal methods can propagate messages over two directions at each switch. When shortest paths are congested, sending more messages through them can deteriorate the congestion condition considerably. In this paper, we present an adaptive routing algorithm for on-chip networks that provide a wide range of alternative paths between each pair of source and destination switches. Initially, the algorithm determines all permitted turns in the network including 180-degree turns on a single channel without creating cycles. The implementation of the algorithm provides the best usage of all allowable turns to route messages more adaptively in the network. On top of that, for selecting a less congested path, an optimized and scalable learning method is utilized. The learning method is based on local and global congestion information and can estimate the latency from each output channel to the destination region.\",\"PeriodicalId\":6333,\"journal\":{\"name\":\"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip\",\"volume\":\"56 1\",\"pages\":\"19-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOCS.2012.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOCS.2012.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

由于消息延迟增加,片上网络中出现拥塞会严重降低性能。在网格拓扑结构中,最小方法可以在每个交换机的两个方向上传播消息。当最短路径拥塞时,通过最短路径发送更多的消息会严重恶化拥塞状况。在本文中,我们提出了一种自适应路由算法,用于片上网络,该网络在每对源和目标交换机之间提供广泛的可选路径。最初,该算法确定网络中所有允许的转弯,包括单个通道上的180度转弯,而不会产生周期。该算法的实现提供了所有允许匝数的最佳使用,使网络中的消息路由更自适应。在此基础上,采用一种优化的、可扩展的学习方法来选择较少拥塞的路径。该学习方法基于局部和全局拥塞信息,可以估计从每个输出通道到目的区域的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HARAQ: Congestion-Aware Learning Model for Highly Adaptive Routing Algorithm in On-Chip Networks
The occurrence of congestion in on-chip networks can severely degrade the performance due to increased message latency. In mesh topology, minimal methods can propagate messages over two directions at each switch. When shortest paths are congested, sending more messages through them can deteriorate the congestion condition considerably. In this paper, we present an adaptive routing algorithm for on-chip networks that provide a wide range of alternative paths between each pair of source and destination switches. Initially, the algorithm determines all permitted turns in the network including 180-degree turns on a single channel without creating cycles. The implementation of the algorithm provides the best usage of all allowable turns to route messages more adaptively in the network. On top of that, for selecting a less congested path, an optimized and scalable learning method is utilized. The learning method is based on local and global congestion information and can estimate the latency from each output channel to the destination region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信