U. Anele, Xavier Crumel, Lydia K. Olagunju, D. P. Compart
{"title":"丝兰基饲料添加剂对4种奶牛日粮干物质体外消化率、微生物生产效率和温室气体排放的影响","authors":"U. Anele, Xavier Crumel, Lydia K. Olagunju, D. P. Compart","doi":"10.3390/dairy3020025","DOIUrl":null,"url":null,"abstract":"The present study evaluated the effects of a feed additive (synthesized from Yucca schidigera) on some fermentation variables. In the first of two experiments, seven concentrations of the feed additive were evaluated using the in vitro batch culture technique to determine the optimum dose to use in the second experiment. The substrates used were a total mixed ration (TMR) and alfalfa hay. The levels of inclusion were 0 (control), 0.5, 1, 2, 4, 6, and 8 g/head/d. After this initial evaluation, 2 g/head/d was selected for the second experiment. For the second study, four dietary substrates (two corn silages and two TMR; collected from different dairy farms in the Piedmont, North Carolina, area) were used. Incubation times were 3, 6, and 24 h and treatments were 0 (control) and 2 g/head/d of the feed additive. Inclusion of the feed additive did not affect (p > 0.05) in vitro dry matter disappearance. Additionally, the feed additive had no effect (p > 0.05) on short-chain fatty acid concentrations, microbial mass, and efficiency of microbial production. Methane production was reduced by 22.7% with feed additive inclusion. Similarly, lower (p = 0.013; 18%) carbon dioxide concentration was observed in the feed additive treatment. Ammonia and hydrogen sulfite concentrations were similar (p > 0.05) for both treatments. Inclusion of the feed additive at 2 g/head/d decreased methane and carbon dioxide concentrations in most of the diets. The energy saved by reducing the amount of methane produced was not partitioned into valuable products such as short-chain fatty acids and microbial mass.","PeriodicalId":11001,"journal":{"name":"Dairy Science & Technology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Yucca schidigera Based Feed Additive on In Vitro Dry Matter Digestibility, Efficiency of Microbial Production, and Greenhouse Gas Emissions of Four Dairy Diets\",\"authors\":\"U. Anele, Xavier Crumel, Lydia K. Olagunju, D. P. Compart\",\"doi\":\"10.3390/dairy3020025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study evaluated the effects of a feed additive (synthesized from Yucca schidigera) on some fermentation variables. In the first of two experiments, seven concentrations of the feed additive were evaluated using the in vitro batch culture technique to determine the optimum dose to use in the second experiment. The substrates used were a total mixed ration (TMR) and alfalfa hay. The levels of inclusion were 0 (control), 0.5, 1, 2, 4, 6, and 8 g/head/d. After this initial evaluation, 2 g/head/d was selected for the second experiment. For the second study, four dietary substrates (two corn silages and two TMR; collected from different dairy farms in the Piedmont, North Carolina, area) were used. Incubation times were 3, 6, and 24 h and treatments were 0 (control) and 2 g/head/d of the feed additive. Inclusion of the feed additive did not affect (p > 0.05) in vitro dry matter disappearance. Additionally, the feed additive had no effect (p > 0.05) on short-chain fatty acid concentrations, microbial mass, and efficiency of microbial production. Methane production was reduced by 22.7% with feed additive inclusion. Similarly, lower (p = 0.013; 18%) carbon dioxide concentration was observed in the feed additive treatment. Ammonia and hydrogen sulfite concentrations were similar (p > 0.05) for both treatments. Inclusion of the feed additive at 2 g/head/d decreased methane and carbon dioxide concentrations in most of the diets. The energy saved by reducing the amount of methane produced was not partitioned into valuable products such as short-chain fatty acids and microbial mass.\",\"PeriodicalId\":11001,\"journal\":{\"name\":\"Dairy Science & Technology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dairy Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dairy3020025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dairy Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dairy3020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Effects of Yucca schidigera Based Feed Additive on In Vitro Dry Matter Digestibility, Efficiency of Microbial Production, and Greenhouse Gas Emissions of Four Dairy Diets
The present study evaluated the effects of a feed additive (synthesized from Yucca schidigera) on some fermentation variables. In the first of two experiments, seven concentrations of the feed additive were evaluated using the in vitro batch culture technique to determine the optimum dose to use in the second experiment. The substrates used were a total mixed ration (TMR) and alfalfa hay. The levels of inclusion were 0 (control), 0.5, 1, 2, 4, 6, and 8 g/head/d. After this initial evaluation, 2 g/head/d was selected for the second experiment. For the second study, four dietary substrates (two corn silages and two TMR; collected from different dairy farms in the Piedmont, North Carolina, area) were used. Incubation times were 3, 6, and 24 h and treatments were 0 (control) and 2 g/head/d of the feed additive. Inclusion of the feed additive did not affect (p > 0.05) in vitro dry matter disappearance. Additionally, the feed additive had no effect (p > 0.05) on short-chain fatty acid concentrations, microbial mass, and efficiency of microbial production. Methane production was reduced by 22.7% with feed additive inclusion. Similarly, lower (p = 0.013; 18%) carbon dioxide concentration was observed in the feed additive treatment. Ammonia and hydrogen sulfite concentrations were similar (p > 0.05) for both treatments. Inclusion of the feed additive at 2 g/head/d decreased methane and carbon dioxide concentrations in most of the diets. The energy saved by reducing the amount of methane produced was not partitioned into valuable products such as short-chain fatty acids and microbial mass.