基于结构的sabin2脊髓灰质炎病毒聚合酶工程改变复制保真度

Keith A, Campagnola S, Peersen O.
{"title":"基于结构的sabin2脊髓灰质炎病毒聚合酶工程改变复制保真度","authors":"Keith A,&nbsp;Campagnola S,&nbsp;Peersen O.","doi":"10.1016/j.nhtm.2015.07.070","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Picornaviruses<span><span><span> cause a wide range of ailments, including </span>myocarditis, poliomyelitis, and </span>vesicular lesion type diseases. Excellent vaccines exist for several of them, and the development of the live-attenuated </span></span>oral polio vaccine (OPV) provided an efficient and cost-effective avenue for successful </span>poliovirus<span> eradication in the majority of the world. However, one hurdle for developing successful live-attenuated vaccines lies with the viral RNA-dependent-RNA-polymerase (RdRP) enzyme whose low replication fidelity allows for reversion of attenuated viruses<span> to disease causing variants. Improving the replication fidelity of RdRPs is an attractive avenue for virus attenuation because it may curtail such reversion issues. We have previously solved the crystal structures of several picornaviral polymerase-RNA complexes that show the structural changes taking place within these polymerases during active site closure and catalysis (Gong et al., 2010, 2013). Based on this, we engineered a panel of fidelity variant </span></span></span>coxsackievirus B3 polymerases that caused reduced infectivity and attenuated virus growth in mice (Gnädig et al., PNAS, 2012). We hypothesize that such modulation of polymerase fidelity via structure based protein engineering can provide an effective platform to improve the design of live-attenuated vaccines. To investigate this further we have generated over a dozen mutations in the poliovirus Sabin 2 strain polymerase and carried out </span><em>in vitro</em><span><span> biochemical assays to show that these can either increase or decrease polymerase fidelity while having minor effects on elongation rates and processivity. The fidelity modulation can arise from single point mutations, multi-site mutations that replace entire groups of interacting residues, or from grafting in structurally homologous sequences from related polymerases. The data suggests mutations in the palm domain of the poliovirus RdRP can serve as efficient fidelity modulation sites for protein engineering purposes, and we are now seeking to test these variant polymerases in an </span>infectious virus context.</span></p></div>","PeriodicalId":90660,"journal":{"name":"New horizons in translational medicine","volume":"2 4","pages":"Page 134"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nhtm.2015.07.070","citationCount":"0","resultStr":"{\"title\":\"Structure-based Engineering of Sabin 2 Poliovirus Polymerase to Alter Replication Fidelity\",\"authors\":\"Keith A,&nbsp;Campagnola S,&nbsp;Peersen O.\",\"doi\":\"10.1016/j.nhtm.2015.07.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span><span>Picornaviruses<span><span><span> cause a wide range of ailments, including </span>myocarditis, poliomyelitis, and </span>vesicular lesion type diseases. Excellent vaccines exist for several of them, and the development of the live-attenuated </span></span>oral polio vaccine (OPV) provided an efficient and cost-effective avenue for successful </span>poliovirus<span> eradication in the majority of the world. However, one hurdle for developing successful live-attenuated vaccines lies with the viral RNA-dependent-RNA-polymerase (RdRP) enzyme whose low replication fidelity allows for reversion of attenuated viruses<span> to disease causing variants. Improving the replication fidelity of RdRPs is an attractive avenue for virus attenuation because it may curtail such reversion issues. We have previously solved the crystal structures of several picornaviral polymerase-RNA complexes that show the structural changes taking place within these polymerases during active site closure and catalysis (Gong et al., 2010, 2013). Based on this, we engineered a panel of fidelity variant </span></span></span>coxsackievirus B3 polymerases that caused reduced infectivity and attenuated virus growth in mice (Gnädig et al., PNAS, 2012). We hypothesize that such modulation of polymerase fidelity via structure based protein engineering can provide an effective platform to improve the design of live-attenuated vaccines. To investigate this further we have generated over a dozen mutations in the poliovirus Sabin 2 strain polymerase and carried out </span><em>in vitro</em><span><span> biochemical assays to show that these can either increase or decrease polymerase fidelity while having minor effects on elongation rates and processivity. The fidelity modulation can arise from single point mutations, multi-site mutations that replace entire groups of interacting residues, or from grafting in structurally homologous sequences from related polymerases. The data suggests mutations in the palm domain of the poliovirus RdRP can serve as efficient fidelity modulation sites for protein engineering purposes, and we are now seeking to test these variant polymerases in an </span>infectious virus context.</span></p></div>\",\"PeriodicalId\":90660,\"journal\":{\"name\":\"New horizons in translational medicine\",\"volume\":\"2 4\",\"pages\":\"Page 134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nhtm.2015.07.070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New horizons in translational medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307502315000983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New horizons in translational medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307502315000983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小核糖核酸病毒引起广泛的疾病,包括心肌炎、脊髓灰质炎和水疱病变型疾病。其中有几种疫苗是优良的,口服脊髓灰质炎减毒活疫苗(OPV)的开发为世界上大多数国家成功根除脊髓灰质炎病毒提供了一种有效和具有成本效益的途径。然而,开发成功减毒活疫苗的一个障碍在于病毒rna依赖性rna聚合酶(RdRP)酶,其低复制保真度允许将减毒病毒逆转为引起疾病的变体。提高RdRPs的复制保真度是病毒衰减的一个有吸引力的途径,因为它可以减少这种逆转问题。我们之前已经解决了几种小核糖核酸病毒聚合酶- rna复合物的晶体结构,显示了这些聚合酶在活性位点关闭和催化过程中发生的结构变化(Gong et al., 2010, 2013)。基于此,我们设计了一组保真度变异柯萨奇病毒B3聚合酶,可降低小鼠的传染性和病毒生长(Gnädig等人,PNAS, 2012)。我们假设,通过基于结构的蛋白质工程对聚合酶保真度的调节可以为改进减毒活疫苗的设计提供有效的平台。为了进一步研究这一点,我们在脊髓灰质炎病毒Sabin 2株聚合酶中产生了十多个突变,并进行了体外生化分析,表明这些突变可以增加或降低聚合酶的保真度,而对延伸率和加工率的影响很小。保真度调节可以由单点突变、取代整个相互作用残基群的多位点突变或相关聚合酶在结构上同源序列的嫁接引起。这些数据表明,脊髓灰质炎病毒RdRP掌区突变可以作为蛋白质工程目的的有效保真度调节位点,我们现在正在寻求在感染性病毒背景下测试这些变异聚合酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-based Engineering of Sabin 2 Poliovirus Polymerase to Alter Replication Fidelity

Picornaviruses cause a wide range of ailments, including myocarditis, poliomyelitis, and vesicular lesion type diseases. Excellent vaccines exist for several of them, and the development of the live-attenuated oral polio vaccine (OPV) provided an efficient and cost-effective avenue for successful poliovirus eradication in the majority of the world. However, one hurdle for developing successful live-attenuated vaccines lies with the viral RNA-dependent-RNA-polymerase (RdRP) enzyme whose low replication fidelity allows for reversion of attenuated viruses to disease causing variants. Improving the replication fidelity of RdRPs is an attractive avenue for virus attenuation because it may curtail such reversion issues. We have previously solved the crystal structures of several picornaviral polymerase-RNA complexes that show the structural changes taking place within these polymerases during active site closure and catalysis (Gong et al., 2010, 2013). Based on this, we engineered a panel of fidelity variant coxsackievirus B3 polymerases that caused reduced infectivity and attenuated virus growth in mice (Gnädig et al., PNAS, 2012). We hypothesize that such modulation of polymerase fidelity via structure based protein engineering can provide an effective platform to improve the design of live-attenuated vaccines. To investigate this further we have generated over a dozen mutations in the poliovirus Sabin 2 strain polymerase and carried out in vitro biochemical assays to show that these can either increase or decrease polymerase fidelity while having minor effects on elongation rates and processivity. The fidelity modulation can arise from single point mutations, multi-site mutations that replace entire groups of interacting residues, or from grafting in structurally homologous sequences from related polymerases. The data suggests mutations in the palm domain of the poliovirus RdRP can serve as efficient fidelity modulation sites for protein engineering purposes, and we are now seeking to test these variant polymerases in an infectious virus context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信