一类由支持函数和曲率函数展开的曲率流

S. Ding, Guanghan Li
{"title":"一类由支持函数和曲率函数展开的曲率流","authors":"S. Ding, Guanghan Li","doi":"10.1090/proc/15189","DOIUrl":null,"url":null,"abstract":"In this paper, we consider an expanding flow of closed, smooth, uniformly convex hypersurface in Euclidean \\mathbb{R}^{n+1} with speed u^\\alpha f^\\beta (\\alpha, \\beta\\in\\mathbb{R}^1), where u is support function of the hypersurface, f is a smooth, symmetric, homogenous of degree one, positive function of the principal curvature radii of the hypersurface. If \\alpha \\leq 0<\\beta\\leq 1-\\alpha, we prove that the flow has a unique smooth and uniformly convex solution for all time, and converges smoothly after normalization, to a round sphere centered at the origin.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A class of curvature flows expanded by support function and curvature function\",\"authors\":\"S. Ding, Guanghan Li\",\"doi\":\"10.1090/proc/15189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider an expanding flow of closed, smooth, uniformly convex hypersurface in Euclidean \\\\mathbb{R}^{n+1} with speed u^\\\\alpha f^\\\\beta (\\\\alpha, \\\\beta\\\\in\\\\mathbb{R}^1), where u is support function of the hypersurface, f is a smooth, symmetric, homogenous of degree one, positive function of the principal curvature radii of the hypersurface. If \\\\alpha \\\\leq 0<\\\\beta\\\\leq 1-\\\\alpha, we prove that the flow has a unique smooth and uniformly convex solution for all time, and converges smoothly after normalization, to a round sphere centered at the origin.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文考虑了欧几里得\mathbb{R} ^{n+1}中速度为u^ \alpha f^ \beta (\alpha, \beta\in\mathbb{R} ^1)的闭光滑均匀凸超曲面的膨胀流,其中u是超曲面的支持函数,f是光滑对称的1次齐次的超曲面的主曲率半径的正函数。当\alpha\leq 0< \beta\leq 1- \alpha时,我们证明了该流始终具有唯一的光滑均匀凸解,并在归一化后平滑收敛到以原点为中心的圆球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of curvature flows expanded by support function and curvature function
In this paper, we consider an expanding flow of closed, smooth, uniformly convex hypersurface in Euclidean \mathbb{R}^{n+1} with speed u^\alpha f^\beta (\alpha, \beta\in\mathbb{R}^1), where u is support function of the hypersurface, f is a smooth, symmetric, homogenous of degree one, positive function of the principal curvature radii of the hypersurface. If \alpha \leq 0<\beta\leq 1-\alpha, we prove that the flow has a unique smooth and uniformly convex solution for all time, and converges smoothly after normalization, to a round sphere centered at the origin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信