没有基于局部子图像相似度统计分布的参考图像质量评估

Beilian Li, X. Mou
{"title":"没有基于局部子图像相似度统计分布的参考图像质量评估","authors":"Beilian Li, X. Mou","doi":"10.1109/QoMEX.2012.6263862","DOIUrl":null,"url":null,"abstract":"The research on no reference image quality assessment (NR IQA) is the most attractive one in the area of image quality perception. In this paper, we propose to use the statistical distribution of local Sub-Image-Similarity (SIS) measures for NR IQA model design. Here the mean and the difference properties among the local SIS measurements in different directions are synthesized into five quality labels to depict the perceptual quality property of deteriorated images. The proposed NR IQA model is developed based on the statistical distribution of quality labels over whole image, via a SVM regression. Experiments show that the proposed model performs best according to the predictive accuracy when compared to the published NR IQA models, and works stably with different parameter selections and cross database evaluations.","PeriodicalId":6303,"journal":{"name":"2012 Fourth International Workshop on Quality of Multimedia Experience","volume":"55 1","pages":"176-181"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"No reference image quality assessment based on statistical distribution of local Sub-Image-Similarity\",\"authors\":\"Beilian Li, X. Mou\",\"doi\":\"10.1109/QoMEX.2012.6263862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research on no reference image quality assessment (NR IQA) is the most attractive one in the area of image quality perception. In this paper, we propose to use the statistical distribution of local Sub-Image-Similarity (SIS) measures for NR IQA model design. Here the mean and the difference properties among the local SIS measurements in different directions are synthesized into five quality labels to depict the perceptual quality property of deteriorated images. The proposed NR IQA model is developed based on the statistical distribution of quality labels over whole image, via a SVM regression. Experiments show that the proposed model performs best according to the predictive accuracy when compared to the published NR IQA models, and works stably with different parameter selections and cross database evaluations.\",\"PeriodicalId\":6303,\"journal\":{\"name\":\"2012 Fourth International Workshop on Quality of Multimedia Experience\",\"volume\":\"55 1\",\"pages\":\"176-181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Workshop on Quality of Multimedia Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QoMEX.2012.6263862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Workshop on Quality of Multimedia Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2012.6263862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

无参考图像质量评价(NR IQA)是图像质量感知领域中最具吸引力的研究方向。在本文中,我们提出将局部子图像相似度(SIS)度量的统计分布用于NR IQA模型设计。本文将不同方向局部SIS测量值的均值和差值综合成5个质量标签来描述劣化图像的感知质量特性。通过支持向量机回归,提出了基于全图像质量标签统计分布的NR IQA模型。实验表明,与已有的NR IQA模型相比,该模型在预测精度方面表现最好,并且在不同参数选择和跨数据库评估下工作稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No reference image quality assessment based on statistical distribution of local Sub-Image-Similarity
The research on no reference image quality assessment (NR IQA) is the most attractive one in the area of image quality perception. In this paper, we propose to use the statistical distribution of local Sub-Image-Similarity (SIS) measures for NR IQA model design. Here the mean and the difference properties among the local SIS measurements in different directions are synthesized into five quality labels to depict the perceptual quality property of deteriorated images. The proposed NR IQA model is developed based on the statistical distribution of quality labels over whole image, via a SVM regression. Experiments show that the proposed model performs best according to the predictive accuracy when compared to the published NR IQA models, and works stably with different parameter selections and cross database evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信