40nm工艺下1Mb STT-MRAM循环耐久性优化方案

Hung-Chang Yu, Kai-Chun Lin, Ku-Feng Lin, Chin-Yi Huang, Y. Chih, T. Ong, T. Chang, S. Natarajan, L. Tran
{"title":"40nm工艺下1Mb STT-MRAM循环耐久性优化方案","authors":"Hung-Chang Yu, Kai-Chun Lin, Ku-Feng Lin, Chin-Yi Huang, Y. Chih, T. Ong, T. Chang, S. Natarajan, L. Tran","doi":"10.1109/ISSCC.2013.6487710","DOIUrl":null,"url":null,"abstract":"Spin-transfer-torque (STT) MRAM is considered as a good candidate for next-generation memory that can replace Flash, SRAM and DRAM as well. As a replacement of SRAM or DRAM, write endurance more than 1012 cycles is required. However, due to limitation in the reliability of magnetic tunnel junction (MTJ), the required endurance may not be achieved if the MTJ is overstressed by the write voltage. In this paper, a new write-path design with wire-resistance-balance scheme is presented that minimizes the voltage stress on MTJ during write operation for cells near the write buffer. Simulation shows the voltage across MTJ becomes more uniform for cells from top to bottom of array. This new scheme is implemented into 1Mb MRAM test-chip and is fabricated in TSMC 40nm low-power process. Cycling testing shows that write endurance can be improved as compared to the previous design.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Cycling endurance optimization scheme for 1Mb STT-MRAM in 40nm technology\",\"authors\":\"Hung-Chang Yu, Kai-Chun Lin, Ku-Feng Lin, Chin-Yi Huang, Y. Chih, T. Ong, T. Chang, S. Natarajan, L. Tran\",\"doi\":\"10.1109/ISSCC.2013.6487710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spin-transfer-torque (STT) MRAM is considered as a good candidate for next-generation memory that can replace Flash, SRAM and DRAM as well. As a replacement of SRAM or DRAM, write endurance more than 1012 cycles is required. However, due to limitation in the reliability of magnetic tunnel junction (MTJ), the required endurance may not be achieved if the MTJ is overstressed by the write voltage. In this paper, a new write-path design with wire-resistance-balance scheme is presented that minimizes the voltage stress on MTJ during write operation for cells near the write buffer. Simulation shows the voltage across MTJ becomes more uniform for cells from top to bottom of array. This new scheme is implemented into 1Mb MRAM test-chip and is fabricated in TSMC 40nm low-power process. Cycling testing shows that write endurance can be improved as compared to the previous design.\",\"PeriodicalId\":6378,\"journal\":{\"name\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2013.6487710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

自旋转移扭矩(STT) MRAM被认为是替代Flash、SRAM和DRAM的下一代存储器的良好候选者。作为SRAM或DRAM的替代品,写入寿命需要超过1012个周期。然而,由于磁隧道结(MTJ)可靠性的限制,如果MTJ受到写电压的过度应力,则可能无法达到所需的耐用性。本文提出了一种新的写路径设计,采用导线电阻平衡方案,使靠近写缓冲区的单元在写操作时对MTJ的电压应力最小化。仿真结果表明,从阵列的顶部到底部,单元间的MTJ电压变得更加均匀。该方案被实现在1Mb MRAM测试芯片上,并采用台积电40nm低功耗工艺制造。循环测试表明,与以前的设计相比,写入持久性可以得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cycling endurance optimization scheme for 1Mb STT-MRAM in 40nm technology
Spin-transfer-torque (STT) MRAM is considered as a good candidate for next-generation memory that can replace Flash, SRAM and DRAM as well. As a replacement of SRAM or DRAM, write endurance more than 1012 cycles is required. However, due to limitation in the reliability of magnetic tunnel junction (MTJ), the required endurance may not be achieved if the MTJ is overstressed by the write voltage. In this paper, a new write-path design with wire-resistance-balance scheme is presented that minimizes the voltage stress on MTJ during write operation for cells near the write buffer. Simulation shows the voltage across MTJ becomes more uniform for cells from top to bottom of array. This new scheme is implemented into 1Mb MRAM test-chip and is fabricated in TSMC 40nm low-power process. Cycling testing shows that write endurance can be improved as compared to the previous design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信