利用种群算法优化磷矿球团焙烧温度

IF 0.4 Q4 MATHEMATICS, APPLIED
V. Bobkov, O. Bulygina, Elizaveta K. Vereikina
{"title":"利用种群算法优化磷矿球团焙烧温度","authors":"V. Bobkov, O. Bulygina, Elizaveta K. Vereikina","doi":"10.37791/2687-0649-2022-17-6-94-101","DOIUrl":null,"url":null,"abstract":"The problem of rational energy resource use is especially acute for energy- intensive industries, which include high-temperature processing of mining chemical raw materials (for example, the production of phosphorite pellets from apatite-nepheline ore waste by drying and roasting). In this regard, the temperature modes of roasting conveyor machine should ensure not only the completion of the ongoing chemical-technological processes and the required product quality, but also energy and resource saving. Thus, there is an urgent scientific and practical task of optimizing charge heating modes based on the results of modeling heat and mass transfer processes occurring in various zones of the roasting conveyor machine. The impossibility of carrying out expensive full-scale experiments leads to the need to use computer simulation methods. Nonlinearity, large dimension of the search space, high computational complexity make it difficult to use traditional deterministic search methods. Under these conditions, the stochastic methods that deliberately introduce an element of randomness into the search algorithm show good results. Today, population algorithms based on modeling the collective behavior of living organisms and characterized by the ability to simultaneously process several options have become widespread. To solve the optimization problem, it is proposed to use a modified Cuckoo search algorithm (by introducing fuzzy elements), which provides a comprehensive account of a huge number of parameters set for each vacuum chamber of the roasting conveyor machine. The control of the chemical-energy-technological system for the processing of apatite-nepheline ores waste, taking into account the obtained data and based on the existing neural network model of the high-temperature process, will make it possible to minimize the amount of return and provide energy-saving conditions for the operation of roasting units.","PeriodicalId":44195,"journal":{"name":"Journal of Applied Mathematics & Informatics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using population algorithms to optimize the temperature regime of roasting phosphorite pellets\",\"authors\":\"V. Bobkov, O. Bulygina, Elizaveta K. Vereikina\",\"doi\":\"10.37791/2687-0649-2022-17-6-94-101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of rational energy resource use is especially acute for energy- intensive industries, which include high-temperature processing of mining chemical raw materials (for example, the production of phosphorite pellets from apatite-nepheline ore waste by drying and roasting). In this regard, the temperature modes of roasting conveyor machine should ensure not only the completion of the ongoing chemical-technological processes and the required product quality, but also energy and resource saving. Thus, there is an urgent scientific and practical task of optimizing charge heating modes based on the results of modeling heat and mass transfer processes occurring in various zones of the roasting conveyor machine. The impossibility of carrying out expensive full-scale experiments leads to the need to use computer simulation methods. Nonlinearity, large dimension of the search space, high computational complexity make it difficult to use traditional deterministic search methods. Under these conditions, the stochastic methods that deliberately introduce an element of randomness into the search algorithm show good results. Today, population algorithms based on modeling the collective behavior of living organisms and characterized by the ability to simultaneously process several options have become widespread. To solve the optimization problem, it is proposed to use a modified Cuckoo search algorithm (by introducing fuzzy elements), which provides a comprehensive account of a huge number of parameters set for each vacuum chamber of the roasting conveyor machine. The control of the chemical-energy-technological system for the processing of apatite-nepheline ores waste, taking into account the obtained data and based on the existing neural network model of the high-temperature process, will make it possible to minimize the amount of return and provide energy-saving conditions for the operation of roasting units.\",\"PeriodicalId\":44195,\"journal\":{\"name\":\"Journal of Applied Mathematics & Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics & Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37791/2687-0649-2022-17-6-94-101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics & Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37791/2687-0649-2022-17-6-94-101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

合理利用能源的问题对能源密集型工业尤其严重,这些工业包括采矿化学原料的高温加工(例如,通过干燥和焙烧从磷灰石-霞石矿石废料中生产磷矿球团)。对此,焙烧输送机的温度模式既要保证正在进行的化工工艺流程的完成和所要求的产品质量,又要节约能源和资源。因此,基于焙烧输送机各区域传热传质过程的建模结果,优化炉料加热方式是一项紧迫的科学和现实任务。由于不可能进行昂贵的全尺寸实验,因此需要使用计算机模拟方法。非线性、搜索空间维数大、计算复杂度高,使得传统的确定性搜索方法难以应用。在这些条件下,故意在搜索算法中引入随机性元素的随机方法显示出良好的效果。今天,基于对生物体集体行为建模的种群算法,以同时处理多个选项的能力为特征,已经变得普遍。为了解决优化问题,提出了一种改进的布谷鸟搜索算法(通过引入模糊元素),该算法全面考虑了焙烧输送机各真空室设置的大量参数。结合所获得的数据,基于已有的高温过程神经网络模型,对磷灰石-霞石矿石废石处理的化学-能量-工艺系统进行控制,将有可能使回收量最小化,并为焙烧装置的运行提供节能条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using population algorithms to optimize the temperature regime of roasting phosphorite pellets
The problem of rational energy resource use is especially acute for energy- intensive industries, which include high-temperature processing of mining chemical raw materials (for example, the production of phosphorite pellets from apatite-nepheline ore waste by drying and roasting). In this regard, the temperature modes of roasting conveyor machine should ensure not only the completion of the ongoing chemical-technological processes and the required product quality, but also energy and resource saving. Thus, there is an urgent scientific and practical task of optimizing charge heating modes based on the results of modeling heat and mass transfer processes occurring in various zones of the roasting conveyor machine. The impossibility of carrying out expensive full-scale experiments leads to the need to use computer simulation methods. Nonlinearity, large dimension of the search space, high computational complexity make it difficult to use traditional deterministic search methods. Under these conditions, the stochastic methods that deliberately introduce an element of randomness into the search algorithm show good results. Today, population algorithms based on modeling the collective behavior of living organisms and characterized by the ability to simultaneously process several options have become widespread. To solve the optimization problem, it is proposed to use a modified Cuckoo search algorithm (by introducing fuzzy elements), which provides a comprehensive account of a huge number of parameters set for each vacuum chamber of the roasting conveyor machine. The control of the chemical-energy-technological system for the processing of apatite-nepheline ores waste, taking into account the obtained data and based on the existing neural network model of the high-temperature process, will make it possible to minimize the amount of return and provide energy-saving conditions for the operation of roasting units.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信