Song Chen, Jian Li, Yongliang Jin, Jun Xiao, Tushar Khosla, M. Hua, D. Jia, H. Duan
{"title":"聚酰亚胺改性超高分子量聚乙烯复合材料的制备及其对摩擦学性能的增强作用","authors":"Song Chen, Jian Li, Yongliang Jin, Jun Xiao, Tushar Khosla, M. Hua, D. Jia, H. Duan","doi":"10.1080/03602559.2017.1344854","DOIUrl":null,"url":null,"abstract":"ABSTRACT Polyimide-modified ultrahigh molecular weight polyethylene (UHMWPE) composites were fabricated by hot-press molding process. Mesoscopic morphologies of polyimide/UHMWPE blending systems show high compatibility between the phases of polyimide and UHMWPE when the weight ratio of polyimide is no more than 50 wt%. Investigation of the tribological properties with a reciprocating ball-on-flat contact tribometer shows that the polyimide filler has important effects on the friction and wear behavior of UHMWPE composites. Compared to pure UHMWPE, the composite with 50 wt% polyimide improved tribological properties best and exhibited 43.1% reduction in friction coefficient and 66.7% reduction in wear volume loss. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fabrication of Polyimide-Modified UHMWPE Composites and Enhancement Effect on Tribological Properties\",\"authors\":\"Song Chen, Jian Li, Yongliang Jin, Jun Xiao, Tushar Khosla, M. Hua, D. Jia, H. Duan\",\"doi\":\"10.1080/03602559.2017.1344854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Polyimide-modified ultrahigh molecular weight polyethylene (UHMWPE) composites were fabricated by hot-press molding process. Mesoscopic morphologies of polyimide/UHMWPE blending systems show high compatibility between the phases of polyimide and UHMWPE when the weight ratio of polyimide is no more than 50 wt%. Investigation of the tribological properties with a reciprocating ball-on-flat contact tribometer shows that the polyimide filler has important effects on the friction and wear behavior of UHMWPE composites. Compared to pure UHMWPE, the composite with 50 wt% polyimide improved tribological properties best and exhibited 43.1% reduction in friction coefficient and 66.7% reduction in wear volume loss. GRAPHICAL ABSTRACT\",\"PeriodicalId\":20629,\"journal\":{\"name\":\"Polymer-Plastics Technology and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer-Plastics Technology and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03602559.2017.1344854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1344854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Fabrication of Polyimide-Modified UHMWPE Composites and Enhancement Effect on Tribological Properties
ABSTRACT Polyimide-modified ultrahigh molecular weight polyethylene (UHMWPE) composites were fabricated by hot-press molding process. Mesoscopic morphologies of polyimide/UHMWPE blending systems show high compatibility between the phases of polyimide and UHMWPE when the weight ratio of polyimide is no more than 50 wt%. Investigation of the tribological properties with a reciprocating ball-on-flat contact tribometer shows that the polyimide filler has important effects on the friction and wear behavior of UHMWPE composites. Compared to pure UHMWPE, the composite with 50 wt% polyimide improved tribological properties best and exhibited 43.1% reduction in friction coefficient and 66.7% reduction in wear volume loss. GRAPHICAL ABSTRACT