{"title":"小波- srnet:一种基于小波的多尺度人脸超分辨率CNN","authors":"Huaibo Huang, R. He, Zhenan Sun, T. Tan","doi":"10.1109/ICCV.2017.187","DOIUrl":null,"url":null,"abstract":"Most modern face super-resolution methods resort to convolutional neural networks (CNN) to infer highresolution (HR) face images. When dealing with very low resolution (LR) images, the performance of these CNN based methods greatly degrades. Meanwhile, these methods tend to produce over-smoothed outputs and miss some textural details. To address these challenges, this paper presents a wavelet-based CNN approach that can ultra-resolve a very low resolution face image of 16 × 16 or smaller pixelsize to its larger version of multiple scaling factors (2×, 4×, 8× and even 16×) in a unified framework. Different from conventional CNN methods directly inferring HR images, our approach firstly learns to predict the LR’s corresponding series of HR’s wavelet coefficients before reconstructing HR images from them. To capture both global topology information and local texture details of human faces, we present a flexible and extensible convolutional neural network with three types of loss: wavelet prediction loss, texture loss and full-image loss. Extensive experiments demonstrate that the proposed approach achieves more appealing results both quantitatively and qualitatively than state-ofthe- art super-resolution methods.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"55 1","pages":"1698-1706"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"336","resultStr":"{\"title\":\"Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution\",\"authors\":\"Huaibo Huang, R. He, Zhenan Sun, T. Tan\",\"doi\":\"10.1109/ICCV.2017.187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most modern face super-resolution methods resort to convolutional neural networks (CNN) to infer highresolution (HR) face images. When dealing with very low resolution (LR) images, the performance of these CNN based methods greatly degrades. Meanwhile, these methods tend to produce over-smoothed outputs and miss some textural details. To address these challenges, this paper presents a wavelet-based CNN approach that can ultra-resolve a very low resolution face image of 16 × 16 or smaller pixelsize to its larger version of multiple scaling factors (2×, 4×, 8× and even 16×) in a unified framework. Different from conventional CNN methods directly inferring HR images, our approach firstly learns to predict the LR’s corresponding series of HR’s wavelet coefficients before reconstructing HR images from them. To capture both global topology information and local texture details of human faces, we present a flexible and extensible convolutional neural network with three types of loss: wavelet prediction loss, texture loss and full-image loss. Extensive experiments demonstrate that the proposed approach achieves more appealing results both quantitatively and qualitatively than state-ofthe- art super-resolution methods.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"55 1\",\"pages\":\"1698-1706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"336\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution
Most modern face super-resolution methods resort to convolutional neural networks (CNN) to infer highresolution (HR) face images. When dealing with very low resolution (LR) images, the performance of these CNN based methods greatly degrades. Meanwhile, these methods tend to produce over-smoothed outputs and miss some textural details. To address these challenges, this paper presents a wavelet-based CNN approach that can ultra-resolve a very low resolution face image of 16 × 16 or smaller pixelsize to its larger version of multiple scaling factors (2×, 4×, 8× and even 16×) in a unified framework. Different from conventional CNN methods directly inferring HR images, our approach firstly learns to predict the LR’s corresponding series of HR’s wavelet coefficients before reconstructing HR images from them. To capture both global topology information and local texture details of human faces, we present a flexible and extensible convolutional neural network with three types of loss: wavelet prediction loss, texture loss and full-image loss. Extensive experiments demonstrate that the proposed approach achieves more appealing results both quantitatively and qualitatively than state-ofthe- art super-resolution methods.