小波- srnet:一种基于小波的多尺度人脸超分辨率CNN

Huaibo Huang, R. He, Zhenan Sun, T. Tan
{"title":"小波- srnet:一种基于小波的多尺度人脸超分辨率CNN","authors":"Huaibo Huang, R. He, Zhenan Sun, T. Tan","doi":"10.1109/ICCV.2017.187","DOIUrl":null,"url":null,"abstract":"Most modern face super-resolution methods resort to convolutional neural networks (CNN) to infer highresolution (HR) face images. When dealing with very low resolution (LR) images, the performance of these CNN based methods greatly degrades. Meanwhile, these methods tend to produce over-smoothed outputs and miss some textural details. To address these challenges, this paper presents a wavelet-based CNN approach that can ultra-resolve a very low resolution face image of 16 × 16 or smaller pixelsize to its larger version of multiple scaling factors (2×, 4×, 8× and even 16×) in a unified framework. Different from conventional CNN methods directly inferring HR images, our approach firstly learns to predict the LR’s corresponding series of HR’s wavelet coefficients before reconstructing HR images from them. To capture both global topology information and local texture details of human faces, we present a flexible and extensible convolutional neural network with three types of loss: wavelet prediction loss, texture loss and full-image loss. Extensive experiments demonstrate that the proposed approach achieves more appealing results both quantitatively and qualitatively than state-ofthe- art super-resolution methods.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"55 1","pages":"1698-1706"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"336","resultStr":"{\"title\":\"Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution\",\"authors\":\"Huaibo Huang, R. He, Zhenan Sun, T. Tan\",\"doi\":\"10.1109/ICCV.2017.187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most modern face super-resolution methods resort to convolutional neural networks (CNN) to infer highresolution (HR) face images. When dealing with very low resolution (LR) images, the performance of these CNN based methods greatly degrades. Meanwhile, these methods tend to produce over-smoothed outputs and miss some textural details. To address these challenges, this paper presents a wavelet-based CNN approach that can ultra-resolve a very low resolution face image of 16 × 16 or smaller pixelsize to its larger version of multiple scaling factors (2×, 4×, 8× and even 16×) in a unified framework. Different from conventional CNN methods directly inferring HR images, our approach firstly learns to predict the LR’s corresponding series of HR’s wavelet coefficients before reconstructing HR images from them. To capture both global topology information and local texture details of human faces, we present a flexible and extensible convolutional neural network with three types of loss: wavelet prediction loss, texture loss and full-image loss. Extensive experiments demonstrate that the proposed approach achieves more appealing results both quantitatively and qualitatively than state-ofthe- art super-resolution methods.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"55 1\",\"pages\":\"1698-1706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"336\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 336

摘要

大多数现代人脸超分辨率方法采用卷积神经网络(CNN)来推断高分辨率人脸图像。当处理极低分辨率(LR)图像时,这些基于CNN的方法的性能会大大下降。同时,这些方法容易产生过于平滑的输出,而忽略了一些纹理细节。为了解决这些挑战,本文提出了一种基于小波的CNN方法,该方法可以在统一的框架内将16× 16或更小像素的极低分辨率人脸图像超分辨率分解为多个缩放因子(2×、4×、8×甚至16×)的大版本。与传统的CNN直接推断HR图像的方法不同,我们的方法首先学习预测LR对应的HR小波系数序列,然后再从HR图像中重建HR图像。为了捕获人脸的全局拓扑信息和局部纹理细节,我们提出了一种灵活可扩展的卷积神经网络,该网络具有三种类型的损失:小波预测损失、纹理损失和全图损失。大量的实验表明,该方法在定量和定性上都比目前最先进的超分辨率方法取得了更令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution
Most modern face super-resolution methods resort to convolutional neural networks (CNN) to infer highresolution (HR) face images. When dealing with very low resolution (LR) images, the performance of these CNN based methods greatly degrades. Meanwhile, these methods tend to produce over-smoothed outputs and miss some textural details. To address these challenges, this paper presents a wavelet-based CNN approach that can ultra-resolve a very low resolution face image of 16 × 16 or smaller pixelsize to its larger version of multiple scaling factors (2×, 4×, 8× and even 16×) in a unified framework. Different from conventional CNN methods directly inferring HR images, our approach firstly learns to predict the LR’s corresponding series of HR’s wavelet coefficients before reconstructing HR images from them. To capture both global topology information and local texture details of human faces, we present a flexible and extensible convolutional neural network with three types of loss: wavelet prediction loss, texture loss and full-image loss. Extensive experiments demonstrate that the proposed approach achieves more appealing results both quantitatively and qualitatively than state-ofthe- art super-resolution methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信