M. Akhurst, S. Hannis, Martyn F. Quinn, Ji‐Quan Shi, M. Koenen, F. Delprat-Jannaud, J. Lecomte, D. Bossie-Codreanu, S. Nagy, ukasz Klimkowski, D. Gei, M. Pluymaekers, D. Long
求助PDF
{"title":"以风险评估为主导的英国SiteChar北海二氧化碳地质储存地点的特征","authors":"M. Akhurst, S. Hannis, Martyn F. Quinn, Ji‐Quan Shi, M. Koenen, F. Delprat-Jannaud, J. Lecomte, D. Bossie-Codreanu, S. Nagy, ukasz Klimkowski, D. Gei, M. Pluymaekers, D. Long","doi":"10.2516/OGST/2015013","DOIUrl":null,"url":null,"abstract":"Risk assessment-led characterisation of a site for the geological storage of CO 2 in the UK northern North Sea was performed for the EU SiteChar research project as one of a portfolio of sites. Implementation and testing of the SiteChar project site characterisation workflow has produced a ‘dry-run’ storage permit application that is compliant with regulatory requirements. A site suitable for commercial-scale storage was characterised, compatible with current and future industrial carbon dioxide (CO 2 ) sources in the northern UK. Pre-characterisation of the site, based on existing information acquired during hydrocarbon exploration and production, has been achieved from publicly available data. The project concept is to store captured CO 2 at a rate of 5 Mt per year for 20 years in the Blake Oil Field and surrounding Captain Sandstone saline aquifer. This commercial-scale storage of 100 Mt CO 2 can be achieved through a storage scenario combining injection of CO 2 into the oil field and concurrent water production down-dip of the field. There would be no encroachment of supercritical phase CO 2 for more than two kilometres beyond the field boundary and no adverse influence on operating hydrocarbon fields provided there is pressure management. Components of a storage permit application for the site are presented, developed as far as possible within a research project. Characterisation and technical investigations were guided by an initial assessment of perceived risks to the prospective site and a need to provide the information required for the storage permit application. The emphasis throughout was to reduce risks and uncertainty on the subsurface containment of stored CO 2 , particularly with respect to site technical performance, monitoring and regulatory issues, and effects on other resources. The results of selected risk assessment-led site characterisation investigations and the subsequent risk reassessments are described together with their implications for the understanding of the site. Additional investigations are identified that could further reduce risks and uncertainties, and enable progress toward a full storage permit application. Permit performance conditions are presented as SiteChar-recommended useful tools for discussion between the competent authority and operator. © M. Akhurst et al.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":"5 1","pages":"567-586"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Risk Assessment-Led Characterisation of the SiteChar UK North Sea Site for the Geological Storage of CO2\",\"authors\":\"M. Akhurst, S. Hannis, Martyn F. Quinn, Ji‐Quan Shi, M. Koenen, F. Delprat-Jannaud, J. Lecomte, D. Bossie-Codreanu, S. Nagy, ukasz Klimkowski, D. Gei, M. Pluymaekers, D. Long\",\"doi\":\"10.2516/OGST/2015013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Risk assessment-led characterisation of a site for the geological storage of CO 2 in the UK northern North Sea was performed for the EU SiteChar research project as one of a portfolio of sites. Implementation and testing of the SiteChar project site characterisation workflow has produced a ‘dry-run’ storage permit application that is compliant with regulatory requirements. A site suitable for commercial-scale storage was characterised, compatible with current and future industrial carbon dioxide (CO 2 ) sources in the northern UK. Pre-characterisation of the site, based on existing information acquired during hydrocarbon exploration and production, has been achieved from publicly available data. The project concept is to store captured CO 2 at a rate of 5 Mt per year for 20 years in the Blake Oil Field and surrounding Captain Sandstone saline aquifer. This commercial-scale storage of 100 Mt CO 2 can be achieved through a storage scenario combining injection of CO 2 into the oil field and concurrent water production down-dip of the field. There would be no encroachment of supercritical phase CO 2 for more than two kilometres beyond the field boundary and no adverse influence on operating hydrocarbon fields provided there is pressure management. Components of a storage permit application for the site are presented, developed as far as possible within a research project. Characterisation and technical investigations were guided by an initial assessment of perceived risks to the prospective site and a need to provide the information required for the storage permit application. The emphasis throughout was to reduce risks and uncertainty on the subsurface containment of stored CO 2 , particularly with respect to site technical performance, monitoring and regulatory issues, and effects on other resources. The results of selected risk assessment-led site characterisation investigations and the subsequent risk reassessments are described together with their implications for the understanding of the site. Additional investigations are identified that could further reduce risks and uncertainties, and enable progress toward a full storage permit application. Permit performance conditions are presented as SiteChar-recommended useful tools for discussion between the competent authority and operator. © M. Akhurst et al.\",\"PeriodicalId\":19444,\"journal\":{\"name\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"volume\":\"5 1\",\"pages\":\"567-586\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2015013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2015013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
引用
批量引用