{"title":"固态直流-交流变压器的设计与分析","authors":"K. Suresh, I. Kumaraswamy, R. Arulmozhiyal","doi":"10.13052/dgaej2156-3306.3832","DOIUrl":null,"url":null,"abstract":"Multimodal single/dual stage conversion (BSDC) based on a new solid-state DC-AC transformer (SDAT) is proposed. The suggested conversion can perform variable or constant DC voltage operation. A variable DC voltage is controlled dynamically in response to changes in DC input side voltage, allowing the DC-DC conversion stage to always operate at its best. New DC-AC power conversion of 2 port two-way choppers (TBDC) and two-way rectifier/inverter conversion (BRIC) was planned for the implementation of the proposed SDAT. SDAT, consisting of a bi-directional step-down-step-up converter and a bi-directional step-up-step-down converter, has been used as a prototype model to check the suggestion system. Functional concepts of this BSDC converter with TBDC are designed and simulated on the MATLAB/simulink environment network. PWM and control methods have been applied for SDAT to accomplish a wide variety of voltage and power loss reduction in the proposed device. Test bench model hardware is designed and tested to validate the effectiveness and benefits of the proposed approach.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Solid State DC-AC Transformer\",\"authors\":\"K. Suresh, I. Kumaraswamy, R. Arulmozhiyal\",\"doi\":\"10.13052/dgaej2156-3306.3832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal single/dual stage conversion (BSDC) based on a new solid-state DC-AC transformer (SDAT) is proposed. The suggested conversion can perform variable or constant DC voltage operation. A variable DC voltage is controlled dynamically in response to changes in DC input side voltage, allowing the DC-DC conversion stage to always operate at its best. New DC-AC power conversion of 2 port two-way choppers (TBDC) and two-way rectifier/inverter conversion (BRIC) was planned for the implementation of the proposed SDAT. SDAT, consisting of a bi-directional step-down-step-up converter and a bi-directional step-up-step-down converter, has been used as a prototype model to check the suggestion system. Functional concepts of this BSDC converter with TBDC are designed and simulated on the MATLAB/simulink environment network. PWM and control methods have been applied for SDAT to accomplish a wide variety of voltage and power loss reduction in the proposed device. Test bench model hardware is designed and tested to validate the effectiveness and benefits of the proposed approach.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of Solid State DC-AC Transformer
Multimodal single/dual stage conversion (BSDC) based on a new solid-state DC-AC transformer (SDAT) is proposed. The suggested conversion can perform variable or constant DC voltage operation. A variable DC voltage is controlled dynamically in response to changes in DC input side voltage, allowing the DC-DC conversion stage to always operate at its best. New DC-AC power conversion of 2 port two-way choppers (TBDC) and two-way rectifier/inverter conversion (BRIC) was planned for the implementation of the proposed SDAT. SDAT, consisting of a bi-directional step-down-step-up converter and a bi-directional step-up-step-down converter, has been used as a prototype model to check the suggestion system. Functional concepts of this BSDC converter with TBDC are designed and simulated on the MATLAB/simulink environment network. PWM and control methods have been applied for SDAT to accomplish a wide variety of voltage and power loss reduction in the proposed device. Test bench model hardware is designed and tested to validate the effectiveness and benefits of the proposed approach.