流形上Sobolev空间的紧子集

L. Skrzypczak, C. Tintarev
{"title":"流形上Sobolev空间的紧子集","authors":"L. Skrzypczak, C. Tintarev","doi":"10.1090/tran/8322","DOIUrl":null,"url":null,"abstract":"It is common that a Sobolev space defined on $\\mathbb{R}^m$ has a non-compact embedding into an $L^p$-space, but it has subspaces for which this embedding becomes compact. There are three well known cases of such subspaces, the Rellich compactness, for a subspace of functions on a bounded domain (or an unbounded domain, sufficiently thin at infinity), the Strauss compactness, for a subspace of radially symmetric functions in $\\mathbb{R}^m$, and the weighted Sobolev spaces. Known generalizations of Strauss compactness include subspaces of functions with block-radial symmetry, subspaces of functions with certain symmetries on Riemannian manifolds, as well as similar subspaces of more general Besov and Triebel-Lizorkin spaces. Presence of symmetries can be interpreted in terms of the rising critical Sobolev exponent corresponding to the smaller effective dimension of the quotient space.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On compact subsets of Sobolev spaces on manifolds\",\"authors\":\"L. Skrzypczak, C. Tintarev\",\"doi\":\"10.1090/tran/8322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is common that a Sobolev space defined on $\\\\mathbb{R}^m$ has a non-compact embedding into an $L^p$-space, but it has subspaces for which this embedding becomes compact. There are three well known cases of such subspaces, the Rellich compactness, for a subspace of functions on a bounded domain (or an unbounded domain, sufficiently thin at infinity), the Strauss compactness, for a subspace of radially symmetric functions in $\\\\mathbb{R}^m$, and the weighted Sobolev spaces. Known generalizations of Strauss compactness include subspaces of functions with block-radial symmetry, subspaces of functions with certain symmetries on Riemannian manifolds, as well as similar subspaces of more general Besov and Triebel-Lizorkin spaces. Presence of symmetries can be interpreted in terms of the rising critical Sobolev exponent corresponding to the smaller effective dimension of the quotient space.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通常在$\mathbb{R}^m$上定义的Sobolev空间有一个非紧的嵌入到$L^p$-空间中,但是它的子空间使得这种嵌入变得紧。这样的子空间有三种众所周知的情况:有界域上函数的子空间的Rellich紧性(或无界域,在无穷远处足够薄),$\mathbb{R}^m$中径向对称函数的子空间的Strauss紧性,以及加权Sobolev空间。已知的Strauss紧性的推广包括具有块径向对称的函数的子空间,黎曼流形上具有一定对称性的函数的子空间,以及更一般的Besov和triiebel - lizorkin空间的类似子空间。对称性的存在可以用上升的临界Sobolev指数来解释,对应于商空间较小的有效维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On compact subsets of Sobolev spaces on manifolds
It is common that a Sobolev space defined on $\mathbb{R}^m$ has a non-compact embedding into an $L^p$-space, but it has subspaces for which this embedding becomes compact. There are three well known cases of such subspaces, the Rellich compactness, for a subspace of functions on a bounded domain (or an unbounded domain, sufficiently thin at infinity), the Strauss compactness, for a subspace of radially symmetric functions in $\mathbb{R}^m$, and the weighted Sobolev spaces. Known generalizations of Strauss compactness include subspaces of functions with block-radial symmetry, subspaces of functions with certain symmetries on Riemannian manifolds, as well as similar subspaces of more general Besov and Triebel-Lizorkin spaces. Presence of symmetries can be interpreted in terms of the rising critical Sobolev exponent corresponding to the smaller effective dimension of the quotient space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信