中性粒子Schrödinger-Pauli方程的对称性

A. Nikitin
{"title":"中性粒子Schrödinger-Pauli方程的对称性","authors":"A. Nikitin","doi":"10.1063/5.0021725","DOIUrl":null,"url":null,"abstract":"With using the algebraic approach Lie symmetries of Schrodinger equations with matrix potentials are classified. Thirty three inequivalent equations of such type together with the related symmetry groups are specified, the admissible equivalence relations are clearly indicated. In particular the Boyer results concerning kinematical invariance groups for arbitrary potentials (C. P. Boyer, Helv. Phys. Acta, {\\bf 47}, 450--605 (1974)) are clarified and corrected.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Symmetries of the Schrödinger–Pauli equation for neutral particles\",\"authors\":\"A. Nikitin\",\"doi\":\"10.1063/5.0021725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With using the algebraic approach Lie symmetries of Schrodinger equations with matrix potentials are classified. Thirty three inequivalent equations of such type together with the related symmetry groups are specified, the admissible equivalence relations are clearly indicated. In particular the Boyer results concerning kinematical invariance groups for arbitrary potentials (C. P. Boyer, Helv. Phys. Acta, {\\\\bf 47}, 450--605 (1974)) are clarified and corrected.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0021725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0021725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用代数方法对具有矩阵势的薛定谔方程的李对称性进行了分类。给出了33个此类不等价方程及其相关对称群,并明确指出了可容许的等价关系。特别是关于任意势的运动不变性群的Boyer结果(C. P. Boyer, Helv.)。理论物理。《学报》,{\bf 47}, 450—605(1974))作了澄清和更正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetries of the Schrödinger–Pauli equation for neutral particles
With using the algebraic approach Lie symmetries of Schrodinger equations with matrix potentials are classified. Thirty three inequivalent equations of such type together with the related symmetry groups are specified, the admissible equivalence relations are clearly indicated. In particular the Boyer results concerning kinematical invariance groups for arbitrary potentials (C. P. Boyer, Helv. Phys. Acta, {\bf 47}, 450--605 (1974)) are clarified and corrected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信