{"title":"中性粒子Schrödinger-Pauli方程的对称性","authors":"A. Nikitin","doi":"10.1063/5.0021725","DOIUrl":null,"url":null,"abstract":"With using the algebraic approach Lie symmetries of Schrodinger equations with matrix potentials are classified. Thirty three inequivalent equations of such type together with the related symmetry groups are specified, the admissible equivalence relations are clearly indicated. In particular the Boyer results concerning kinematical invariance groups for arbitrary potentials (C. P. Boyer, Helv. Phys. Acta, {\\bf 47}, 450--605 (1974)) are clarified and corrected.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Symmetries of the Schrödinger–Pauli equation for neutral particles\",\"authors\":\"A. Nikitin\",\"doi\":\"10.1063/5.0021725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With using the algebraic approach Lie symmetries of Schrodinger equations with matrix potentials are classified. Thirty three inequivalent equations of such type together with the related symmetry groups are specified, the admissible equivalence relations are clearly indicated. In particular the Boyer results concerning kinematical invariance groups for arbitrary potentials (C. P. Boyer, Helv. Phys. Acta, {\\\\bf 47}, 450--605 (1974)) are clarified and corrected.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0021725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0021725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
利用代数方法对具有矩阵势的薛定谔方程的李对称性进行了分类。给出了33个此类不等价方程及其相关对称群,并明确指出了可容许的等价关系。特别是关于任意势的运动不变性群的Boyer结果(C. P. Boyer, Helv.)。理论物理。《学报》,{\bf 47}, 450—605(1974))作了澄清和更正。
Symmetries of the Schrödinger–Pauli equation for neutral particles
With using the algebraic approach Lie symmetries of Schrodinger equations with matrix potentials are classified. Thirty three inequivalent equations of such type together with the related symmetry groups are specified, the admissible equivalence relations are clearly indicated. In particular the Boyer results concerning kinematical invariance groups for arbitrary potentials (C. P. Boyer, Helv. Phys. Acta, {\bf 47}, 450--605 (1974)) are clarified and corrected.