高性能,超高压4H-SiC igbt

S. Ryu, C. Capell, Lin Cheng, C. Jonas, A. Gupta, M. Donofrio, J. Clayton, M. O'loughlin, A. Burk, D. Grider, A. Agarwal, J. Palmour, A. Hefner, S. Bhattacharya
{"title":"高性能,超高压4H-SiC igbt","authors":"S. Ryu, C. Capell, Lin Cheng, C. Jonas, A. Gupta, M. Donofrio, J. Clayton, M. O'loughlin, A. Burk, D. Grider, A. Agarwal, J. Palmour, A. Hefner, S. Bhattacharya","doi":"10.1109/ECCE.2012.6342311","DOIUrl":null,"url":null,"abstract":"We present our latest developments in ultra high voltage 4H-SiC IGBTs. A 4H-SiC P-IGBT, with a chip size of 6.7 mm × 6.7 mm and an active area of 0.16 cm2 exhibited a record high blocking voltage of 15 kV, while showing a room temperature differential specific on-resistance of 24 mΩ-cm2 with a gate bias of -20 V. A 4H-SiC N-IGBT with the same area showed a blocking voltage of 12.5 kV, and demonstrated a room temperature differential specific on-resistance of 5.3 mΩ-cm2 with a gate bias of 20 V. Buffer layer design, which includes controlling the doping concentration and the thickness of the field-stop buffer layers, was used to control the charge injection from the backside. Effects on buffer layer design on static characteristics and switching behavior are reported.","PeriodicalId":6401,"journal":{"name":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"High performance, ultra high voltage 4H-SiC IGBTs\",\"authors\":\"S. Ryu, C. Capell, Lin Cheng, C. Jonas, A. Gupta, M. Donofrio, J. Clayton, M. O'loughlin, A. Burk, D. Grider, A. Agarwal, J. Palmour, A. Hefner, S. Bhattacharya\",\"doi\":\"10.1109/ECCE.2012.6342311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our latest developments in ultra high voltage 4H-SiC IGBTs. A 4H-SiC P-IGBT, with a chip size of 6.7 mm × 6.7 mm and an active area of 0.16 cm2 exhibited a record high blocking voltage of 15 kV, while showing a room temperature differential specific on-resistance of 24 mΩ-cm2 with a gate bias of -20 V. A 4H-SiC N-IGBT with the same area showed a blocking voltage of 12.5 kV, and demonstrated a room temperature differential specific on-resistance of 5.3 mΩ-cm2 with a gate bias of 20 V. Buffer layer design, which includes controlling the doping concentration and the thickness of the field-stop buffer layers, was used to control the charge injection from the backside. Effects on buffer layer design on static characteristics and switching behavior are reported.\",\"PeriodicalId\":6401,\"journal\":{\"name\":\"2012 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2012.6342311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2012.6342311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

我们介绍了超高压4H-SiC igbt的最新发展。芯片尺寸为6.7 mm × 6.7 mm,有源面积为0.16 cm2的4H-SiC P-IGBT具有15 kV的高阻断电压,室温差分比导通电阻为24 mΩ-cm2,栅极偏置为-20 V。相同面积的4H-SiC N-IGBT的阻断电压为12.5 kV,室温差分比导通电阻为5.3 mΩ-cm2,栅极偏置为20 V。缓冲层设计包括控制掺杂浓度和场阻缓冲层厚度,以控制从背面的电荷注入。报道了缓冲层设计对静态特性和开关行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High performance, ultra high voltage 4H-SiC IGBTs
We present our latest developments in ultra high voltage 4H-SiC IGBTs. A 4H-SiC P-IGBT, with a chip size of 6.7 mm × 6.7 mm and an active area of 0.16 cm2 exhibited a record high blocking voltage of 15 kV, while showing a room temperature differential specific on-resistance of 24 mΩ-cm2 with a gate bias of -20 V. A 4H-SiC N-IGBT with the same area showed a blocking voltage of 12.5 kV, and demonstrated a room temperature differential specific on-resistance of 5.3 mΩ-cm2 with a gate bias of 20 V. Buffer layer design, which includes controlling the doping concentration and the thickness of the field-stop buffer layers, was used to control the charge injection from the backside. Effects on buffer layer design on static characteristics and switching behavior are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信