热粘性流体边界层及远场声波传播数值模拟

Q1 Arts and Humanities
N. Joly, P. Honzík
{"title":"热粘性流体边界层及远场声波传播数值模拟","authors":"N. Joly, P. Honzík","doi":"10.3813/aaa.919392","DOIUrl":null,"url":null,"abstract":"To model linear acoustics in a thermoviscous fluid in open domain and time-harmonic regime, a Finite Element formulation in a bounded meshed domain is combined with the integral representation of the field for the propagative solution. The integrals are non-singular and involve the\n only Finite Element node values for temperature variation and particle velocity variables. To overcome the non-uniqueness of solutions at fictitious resonant frequencies, a Burton-Miller combination of integral representation is used. This formulation is suitable to compute acoustic radiation,\n scattering and diffraction by objects or mutual interaction between transducers. Two-dimensional computational experiments are presented in an infinite, open domain (exterior), showing that the model can be achieved in meshing only a thin domain surrounding the physical boundaries of a device.","PeriodicalId":35085,"journal":{"name":"Acta Acustica united with Acustica","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Modelling of Boundary Layers and Far Field Acoustic Propagation in Thermoviscous Fluid\",\"authors\":\"N. Joly, P. Honzík\",\"doi\":\"10.3813/aaa.919392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To model linear acoustics in a thermoviscous fluid in open domain and time-harmonic regime, a Finite Element formulation in a bounded meshed domain is combined with the integral representation of the field for the propagative solution. The integrals are non-singular and involve the\\n only Finite Element node values for temperature variation and particle velocity variables. To overcome the non-uniqueness of solutions at fictitious resonant frequencies, a Burton-Miller combination of integral representation is used. This formulation is suitable to compute acoustic radiation,\\n scattering and diffraction by objects or mutual interaction between transducers. Two-dimensional computational experiments are presented in an infinite, open domain (exterior), showing that the model can be achieved in meshing only a thin domain surrounding the physical boundaries of a device.\",\"PeriodicalId\":35085,\"journal\":{\"name\":\"Acta Acustica united with Acustica\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica united with Acustica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3813/aaa.919392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica united with Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3813/aaa.919392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

摘要

为了在开放域和时谐域中模拟热粘性流体中的线性声学,将有界网格域中的有限元公式与传播解的场的积分表示相结合。积分是非奇异的,只涉及温度变化和粒子速度变量的有限元节点值。为了克服在虚拟谐振频率处解的非唯一性,采用了波顿-米勒组合积分表示。该公式适用于计算物体的声辐射、散射和衍射或换能器之间的相互作用。在无限开放域(外部)中进行了二维计算实验,表明该模型只能在围绕设备物理边界的薄域内实现网格划分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Modelling of Boundary Layers and Far Field Acoustic Propagation in Thermoviscous Fluid
To model linear acoustics in a thermoviscous fluid in open domain and time-harmonic regime, a Finite Element formulation in a bounded meshed domain is combined with the integral representation of the field for the propagative solution. The integrals are non-singular and involve the only Finite Element node values for temperature variation and particle velocity variables. To overcome the non-uniqueness of solutions at fictitious resonant frequencies, a Burton-Miller combination of integral representation is used. This formulation is suitable to compute acoustic radiation, scattering and diffraction by objects or mutual interaction between transducers. Two-dimensional computational experiments are presented in an infinite, open domain (exterior), showing that the model can be achieved in meshing only a thin domain surrounding the physical boundaries of a device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
6.8 months
期刊介绍: Cessation. Acta Acustica united with Acustica (Acta Acust united Ac), was published together with the European Acoustics Association (EAA). It was an international, peer-reviewed journal on acoustics. It published original articles on all subjects in the field of acoustics, such as • General Linear Acoustics, • Nonlinear Acoustics, Macrosonics, • Aeroacoustics, • Atmospheric Sound, • Underwater Sound, • Ultrasonics, • Physical Acoustics, • Structural Acoustics, • Noise Control, • Active Control, • Environmental Noise, • Building Acoustics, • Room Acoustics, • Acoustic Materials and Metamaterials, • Audio Signal Processing and Transducers, • Computational and Numerical Acoustics, • Hearing, Audiology and Psychoacoustics, • Speech, • Musical Acoustics, • Virtual Acoustics, • Auditory Quality of Systems, • Animal Bioacoustics, • History of Acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信