{"title":"接触几何中的洛伦兹距离函数","authors":"J. Hedicke","doi":"10.1142/s179352532250008x","DOIUrl":null,"url":null,"abstract":"An important tool to analyse the causal structure of a Lorentzian manifold is given by the Lorentzian distance function. We define a class of Lorentzian distance functions on the group of contactomorphisms of a closed contact manifold depending on the choice of a contact form. These distance functions are continuous with respect to the Hofer norm for contactomorphisms defined by Shelukhin [The Hofer norm of a contactomorphism, J. Symplectic Geom. 15 (2017) 1173–1208] and finite if and only if the group of contactomorphisms is orderable. To prove this, we show that intervals defined by the positivity relation are open with respect to the topology induced by the Hofer norm. For orderable Legendrian isotopy classes we show that the Chekanov-type metric defined in [D. Rosen and J. Zhang, Chekanov’s dichotomy in contact topology, Math. Res. Lett. 27 (2020) 1165–1194] is nondegenerate. In this case, similar results hold for a Lorentzian distance functions on Legendrian isotopy classes. This leads to a natural class of metrics associated to a globally hyperbolic Lorentzian manifold such that its Cauchy hypersurface has a unit co-tangent bundle with orderable isotopy class of the fibres.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"8 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Lorentzian distance functions in contact geometry\",\"authors\":\"J. Hedicke\",\"doi\":\"10.1142/s179352532250008x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important tool to analyse the causal structure of a Lorentzian manifold is given by the Lorentzian distance function. We define a class of Lorentzian distance functions on the group of contactomorphisms of a closed contact manifold depending on the choice of a contact form. These distance functions are continuous with respect to the Hofer norm for contactomorphisms defined by Shelukhin [The Hofer norm of a contactomorphism, J. Symplectic Geom. 15 (2017) 1173–1208] and finite if and only if the group of contactomorphisms is orderable. To prove this, we show that intervals defined by the positivity relation are open with respect to the topology induced by the Hofer norm. For orderable Legendrian isotopy classes we show that the Chekanov-type metric defined in [D. Rosen and J. Zhang, Chekanov’s dichotomy in contact topology, Math. Res. Lett. 27 (2020) 1165–1194] is nondegenerate. In this case, similar results hold for a Lorentzian distance functions on Legendrian isotopy classes. This leads to a natural class of metrics associated to a globally hyperbolic Lorentzian manifold such that its Cauchy hypersurface has a unit co-tangent bundle with orderable isotopy class of the fibres.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s179352532250008x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s179352532250008x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
摘要
洛伦兹距离函数是分析洛伦兹流形因果结构的一个重要工具。根据接触形式的选择,在闭合接触流形的接触同构群上定义了一类洛伦兹距离函数。这些距离函数相对于Shelukhin定义的接触同构的Hofer范数是连续的[接触同构的Hofer范数,J. simplectic Geom. 15(2017) 1173-1208],并且当且仅当接触同构群是有序的。为了证明这一点,我们证明了由正关系定义的区间相对于由Hofer范数诱导的拓扑是开放的。对于有序的Legendrian同位素类,我们证明了在[D]中定义的chekanov型度量。张俊,Chekanov在接触拓扑中的二分法,数学。Res. Lett. 27(2020) 1165-1194]是非简并的。在这种情况下,类似的结果适用于洛伦兹距离函数在Legendrian同位素类上。这导致了与全局双曲洛伦兹流形相关联的一类自然度量,使得其柯西超曲面具有具有有序同位素类纤维的单位共切束。
An important tool to analyse the causal structure of a Lorentzian manifold is given by the Lorentzian distance function. We define a class of Lorentzian distance functions on the group of contactomorphisms of a closed contact manifold depending on the choice of a contact form. These distance functions are continuous with respect to the Hofer norm for contactomorphisms defined by Shelukhin [The Hofer norm of a contactomorphism, J. Symplectic Geom. 15 (2017) 1173–1208] and finite if and only if the group of contactomorphisms is orderable. To prove this, we show that intervals defined by the positivity relation are open with respect to the topology induced by the Hofer norm. For orderable Legendrian isotopy classes we show that the Chekanov-type metric defined in [D. Rosen and J. Zhang, Chekanov’s dichotomy in contact topology, Math. Res. Lett. 27 (2020) 1165–1194] is nondegenerate. In this case, similar results hold for a Lorentzian distance functions on Legendrian isotopy classes. This leads to a natural class of metrics associated to a globally hyperbolic Lorentzian manifold such that its Cauchy hypersurface has a unit co-tangent bundle with orderable isotopy class of the fibres.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.