光滑空间中涉及三角形面积的希尔伯特范数的刻画

T. Precupanu
{"title":"光滑空间中涉及三角形面积的希尔伯特范数的刻画","authors":"T. Precupanu","doi":"10.24193/subbmath.2022.1.10","DOIUrl":null,"url":null,"abstract":"In the previous paper, we have defined together with I. Ionic\\u{a} the heights of a nontrivial triangle with respect to Birkhoff orthogonality in a real smooth space $X$, $\\mbox{dim}\\, X\\geq 2.$ In the present paper, we remark that, generally, the area of a nontrivial triangle in $X$ has not the same value for different heights of the triangle. The purpose of this paper is to characterize the norm of $X$ if this space has the property that the area of any triangle is well defined (independent of considered height). In this line we give five equivalent properties using the directional derivative of the norm. If $X$ is strictly convex and $\\mbox{dim} X\\geq 3$, then each of these five properties characterizes the hilbertian norms (generated by inner products).","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of hilbertian norms involving the areas of triangles in a smooth space\",\"authors\":\"T. Precupanu\",\"doi\":\"10.24193/subbmath.2022.1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the previous paper, we have defined together with I. Ionic\\\\u{a} the heights of a nontrivial triangle with respect to Birkhoff orthogonality in a real smooth space $X$, $\\\\mbox{dim}\\\\, X\\\\geq 2.$ In the present paper, we remark that, generally, the area of a nontrivial triangle in $X$ has not the same value for different heights of the triangle. The purpose of this paper is to characterize the norm of $X$ if this space has the property that the area of any triangle is well defined (independent of considered height). In this line we give five equivalent properties using the directional derivative of the norm. If $X$ is strictly convex and $\\\\mbox{dim} X\\\\geq 3$, then each of these five properties characterizes the hilbertian norms (generated by inner products).\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.1.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在上一篇文章中,我们与I. Ionic \u{a}定义了实光滑空间中关于Birkhoff正交的非平凡三角形的高度$X$, $\mbox{dim}\, X\geq 2.$。在这篇文章中,我们注意到,在$X$中,对于三角形的不同高度,非平凡三角形的面积通常是不相同的。本文的目的是描述$X$的范数,如果这个空间具有任何三角形的面积是定义好的(与考虑的高度无关)的性质。在这一行中,我们用范数的方向导数给出了五个等价的性质。如果$X$是严格凸的,$\mbox{dim} X\geq 3$是严格凸的,那么这五个性质中的每一个都表征了希尔伯特范数(由内积生成)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of hilbertian norms involving the areas of triangles in a smooth space
In the previous paper, we have defined together with I. Ionic\u{a} the heights of a nontrivial triangle with respect to Birkhoff orthogonality in a real smooth space $X$, $\mbox{dim}\, X\geq 2.$ In the present paper, we remark that, generally, the area of a nontrivial triangle in $X$ has not the same value for different heights of the triangle. The purpose of this paper is to characterize the norm of $X$ if this space has the property that the area of any triangle is well defined (independent of considered height). In this line we give five equivalent properties using the directional derivative of the norm. If $X$ is strictly convex and $\mbox{dim} X\geq 3$, then each of these five properties characterizes the hilbertian norms (generated by inner products).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信