Himadri Duwarah, J. Devi, N. Sharma, K. Saikia, P. Datta
{"title":"硫化锌量子点在抗菌中的应用及memm - mode器件对大肠杆菌浓度的测定","authors":"Himadri Duwarah, J. Devi, N. Sharma, K. Saikia, P. Datta","doi":"10.4028/p-5m1d1m","DOIUrl":null,"url":null,"abstract":"This paper reports the synthesis of ZnS Quantum Dots (QDs) embedded in PVA by aqueous precipitation method and its application in antibacterial as well as to find or estimation of Escherichia coli (E.coli) concentration by using ZnS/PVA QD based mem-mode nanodevices. The as-synthesized ZnS/PVA samples are characterized by UV-Vis spectroscopy (UV), Photo luminescence (PL), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Antibacterial property of ZnS/PVA QDs against gram positive (S.aureus) as well as gram negative (E.coli) are tested. The antibacterial property is found to be more in S.aureus in comparision to E.coli. Mem-behaviour of the as-fabricated devices is observed through electrical characterization. COMSOL MP Software is used for simulating I-V characteristics. The voltage gap is found to be a promising parameter for estimating E.coli concentration with ZnS/PVA QDs as active material and an electrical circuit is presented","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"60 1","pages":"11 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc Sulphide Quantum Dots’ Applications in Antibacterial as well as Estimation of E.Coli Concentration by Fabricating Mem-Mode Devices\",\"authors\":\"Himadri Duwarah, J. Devi, N. Sharma, K. Saikia, P. Datta\",\"doi\":\"10.4028/p-5m1d1m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the synthesis of ZnS Quantum Dots (QDs) embedded in PVA by aqueous precipitation method and its application in antibacterial as well as to find or estimation of Escherichia coli (E.coli) concentration by using ZnS/PVA QD based mem-mode nanodevices. The as-synthesized ZnS/PVA samples are characterized by UV-Vis spectroscopy (UV), Photo luminescence (PL), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Antibacterial property of ZnS/PVA QDs against gram positive (S.aureus) as well as gram negative (E.coli) are tested. The antibacterial property is found to be more in S.aureus in comparision to E.coli. Mem-behaviour of the as-fabricated devices is observed through electrical characterization. COMSOL MP Software is used for simulating I-V characteristics. The voltage gap is found to be a promising parameter for estimating E.coli concentration with ZnS/PVA QDs as active material and an electrical circuit is presented\",\"PeriodicalId\":7271,\"journal\":{\"name\":\"Advanced Materials Research\",\"volume\":\"60 1\",\"pages\":\"11 - 18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-5m1d1m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-5m1d1m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zinc Sulphide Quantum Dots’ Applications in Antibacterial as well as Estimation of E.Coli Concentration by Fabricating Mem-Mode Devices
This paper reports the synthesis of ZnS Quantum Dots (QDs) embedded in PVA by aqueous precipitation method and its application in antibacterial as well as to find or estimation of Escherichia coli (E.coli) concentration by using ZnS/PVA QD based mem-mode nanodevices. The as-synthesized ZnS/PVA samples are characterized by UV-Vis spectroscopy (UV), Photo luminescence (PL), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Antibacterial property of ZnS/PVA QDs against gram positive (S.aureus) as well as gram negative (E.coli) are tested. The antibacterial property is found to be more in S.aureus in comparision to E.coli. Mem-behaviour of the as-fabricated devices is observed through electrical characterization. COMSOL MP Software is used for simulating I-V characteristics. The voltage gap is found to be a promising parameter for estimating E.coli concentration with ZnS/PVA QDs as active material and an electrical circuit is presented