电氧化法降解盐酸万古霉素

Antunes Mh, Arş, Colvara Wa
{"title":"电氧化法降解盐酸万古霉素","authors":"Antunes Mh, Arş, Colvara Wa","doi":"10.4172/2329-6798.1000230","DOIUrl":null,"url":null,"abstract":"Many pharmaceuticals are considered recalcitrant pollutants and represent a problem for human and animal health due to continuous contribution in the aquatic environment and the bacteria resistance development to antibiotics. Vancomycin is one of the most antibiotics administered in medicine, nevertheless, there is not much knowledge about the presence, fate and the effects of Vancomycin in the environment. The advanced oxidation techniques (AOTs) are shown as alternatives for the treatment of water and wastewater in order to degrade pollutants and contaminants. Therefore, this work is aimed to evaluate the Vancomycin degradation in an aqueous medium using electrooxidation (EO) technique and to optimize the reaction conditions. The experiments were conducted in a homemade electrochemical cell in acrylic with a working volume of 500 cm3; DSA electrodes – Dimensionally Stable Anodes (70TiO2-30RuO2) were used (effective area of work - 41.25 cm2); NaCl P.A. was used as supporting electrolyte; 130 mg L-1 of Vancomycin was used in aqueous solution. The optimization was done using central composite design (CCD) totaling 18 experiments. The evaluated factors were: interelectrodes distance (ID), applied current and supporting electrolyte concentration. All experiments were conducted for 20 minutes with sampling at 0, 1, 2, 3, 4, 5, 10 and 20 minutes. Vancomycin concentrations were determined by High Performance Liquid Cromatography with Diode-Array Detection (HPLC-DAD) (Mobile phase: phosphate buffer 0.05 mol L-1, pH 4.7: MeOH: ACN [80:15:5, v/v], Injection volume: 40 L; C18 with flow rate of 1.0 mL min-1, λ: 210 nm. The results show that the electrooxidation is effective in Vancomycin degradation, showing as an alternative to degradation of this drug. The method used obtained 100% of degradation in 2 minutes of treatment in optimum conditions: 400 mA, 3 cm interelectrodes distance and 1,100 mg L-1 NaCl.","PeriodicalId":18605,"journal":{"name":"Modern Chemistry & Applications","volume":"4 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Degradation of Vancomycin Hydrochloride by Electrooxidation\",\"authors\":\"Antunes Mh, Arş, Colvara Wa\",\"doi\":\"10.4172/2329-6798.1000230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many pharmaceuticals are considered recalcitrant pollutants and represent a problem for human and animal health due to continuous contribution in the aquatic environment and the bacteria resistance development to antibiotics. Vancomycin is one of the most antibiotics administered in medicine, nevertheless, there is not much knowledge about the presence, fate and the effects of Vancomycin in the environment. The advanced oxidation techniques (AOTs) are shown as alternatives for the treatment of water and wastewater in order to degrade pollutants and contaminants. Therefore, this work is aimed to evaluate the Vancomycin degradation in an aqueous medium using electrooxidation (EO) technique and to optimize the reaction conditions. The experiments were conducted in a homemade electrochemical cell in acrylic with a working volume of 500 cm3; DSA electrodes – Dimensionally Stable Anodes (70TiO2-30RuO2) were used (effective area of work - 41.25 cm2); NaCl P.A. was used as supporting electrolyte; 130 mg L-1 of Vancomycin was used in aqueous solution. The optimization was done using central composite design (CCD) totaling 18 experiments. The evaluated factors were: interelectrodes distance (ID), applied current and supporting electrolyte concentration. All experiments were conducted for 20 minutes with sampling at 0, 1, 2, 3, 4, 5, 10 and 20 minutes. Vancomycin concentrations were determined by High Performance Liquid Cromatography with Diode-Array Detection (HPLC-DAD) (Mobile phase: phosphate buffer 0.05 mol L-1, pH 4.7: MeOH: ACN [80:15:5, v/v], Injection volume: 40 L; C18 with flow rate of 1.0 mL min-1, λ: 210 nm. The results show that the electrooxidation is effective in Vancomycin degradation, showing as an alternative to degradation of this drug. The method used obtained 100% of degradation in 2 minutes of treatment in optimum conditions: 400 mA, 3 cm interelectrodes distance and 1,100 mg L-1 NaCl.\",\"PeriodicalId\":18605,\"journal\":{\"name\":\"Modern Chemistry & Applications\",\"volume\":\"4 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Chemistry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-6798.1000230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Chemistry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-6798.1000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多药物被认为是顽固性污染物,由于在水生环境中的持续贡献和细菌对抗生素的耐药性发展,对人类和动物的健康构成了问题。万古霉素是医学上使用最多的抗生素之一,然而,人们对万古霉素在环境中的存在、命运和作用知之甚少。高级氧化技术(aot)是水和废水处理的替代方案,以降解污染物和污染物。因此,本研究旨在评价电氧化(EO)技术在水介质中降解万古霉素的效果,并优化反应条件。实验在自制的工作体积为500 cm3的丙烯酸电化学电池中进行;采用DSA电极-尺寸稳定阳极(70TiO2-30RuO2)(有效做功面积- 41.25 cm2);采用NaCl P.A.作为支撑电解质;万古霉素溶液浓度为130 mg L-1。采用中心复合设计(CCD)进行优化,共进行了18次实验。评价因素为:电极间距、外加电流和电解液浓度。实验时间为20分钟,分别在0、1、2、3、4、5、10、20分钟取样。采用高效液相色谱-二极管阵列检测(HPLC-DAD)法测定万古霉素浓度(流动相:磷酸盐缓冲液0.05 mol L-1, pH 4.7: MeOH: ACN [80:15:5, v/v],进样量:40 L;C18,流速1.0 mL min-1, λ: 210 nm。结果表明,电氧化对万古霉素的降解是有效的,是万古霉素降解的替代方法。该方法在最佳条件下:400 mA,电极间距3 cm, 1100 mg L-1 NaCl, 2分钟内降解率达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degradation of Vancomycin Hydrochloride by Electrooxidation
Many pharmaceuticals are considered recalcitrant pollutants and represent a problem for human and animal health due to continuous contribution in the aquatic environment and the bacteria resistance development to antibiotics. Vancomycin is one of the most antibiotics administered in medicine, nevertheless, there is not much knowledge about the presence, fate and the effects of Vancomycin in the environment. The advanced oxidation techniques (AOTs) are shown as alternatives for the treatment of water and wastewater in order to degrade pollutants and contaminants. Therefore, this work is aimed to evaluate the Vancomycin degradation in an aqueous medium using electrooxidation (EO) technique and to optimize the reaction conditions. The experiments were conducted in a homemade electrochemical cell in acrylic with a working volume of 500 cm3; DSA electrodes – Dimensionally Stable Anodes (70TiO2-30RuO2) were used (effective area of work - 41.25 cm2); NaCl P.A. was used as supporting electrolyte; 130 mg L-1 of Vancomycin was used in aqueous solution. The optimization was done using central composite design (CCD) totaling 18 experiments. The evaluated factors were: interelectrodes distance (ID), applied current and supporting electrolyte concentration. All experiments were conducted for 20 minutes with sampling at 0, 1, 2, 3, 4, 5, 10 and 20 minutes. Vancomycin concentrations were determined by High Performance Liquid Cromatography with Diode-Array Detection (HPLC-DAD) (Mobile phase: phosphate buffer 0.05 mol L-1, pH 4.7: MeOH: ACN [80:15:5, v/v], Injection volume: 40 L; C18 with flow rate of 1.0 mL min-1, λ: 210 nm. The results show that the electrooxidation is effective in Vancomycin degradation, showing as an alternative to degradation of this drug. The method used obtained 100% of degradation in 2 minutes of treatment in optimum conditions: 400 mA, 3 cm interelectrodes distance and 1,100 mg L-1 NaCl.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信