线性微分方程的Diamond - Bessel - Klein - Gordon算子

W. Satsanit
{"title":"线性微分方程的Diamond - Bessel - Klein - Gordon算子","authors":"W. Satsanit","doi":"10.22436/JNSA.012.08.06","DOIUrl":null,"url":null,"abstract":"In this paper, first, we study the Green function of the Diamond Klein Gordon Bessel operator iterated k times. We give a sense of Distribution theory considering the properties of the convolution of the Green function. Finally, we solve the following equation ( ♦B + d2 )k u(x) = m ∑ r=0 cr ( ♦B + d2 )k δ. It was found that the type of above equation depend on the relationship between the value k and m.","PeriodicalId":48799,"journal":{"name":"Journal of Nonlinear Sciences and Applications","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Diamond Bessel Klein Gordon operator related to linear differential equation\",\"authors\":\"W. Satsanit\",\"doi\":\"10.22436/JNSA.012.08.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, first, we study the Green function of the Diamond Klein Gordon Bessel operator iterated k times. We give a sense of Distribution theory considering the properties of the convolution of the Green function. Finally, we solve the following equation ( ♦B + d2 )k u(x) = m ∑ r=0 cr ( ♦B + d2 )k δ. It was found that the type of above equation depend on the relationship between the value k and m.\",\"PeriodicalId\":48799,\"journal\":{\"name\":\"Journal of Nonlinear Sciences and Applications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/JNSA.012.08.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.012.08.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先研究了迭代k次的Diamond Klein Gordon Bessel算子的Green函数。考虑格林函数的卷积性质,给出了一种分布理论的意义。最后,我们解出如下方程(♦B + d2)k u(x) = m∑r=0 cr(♦B + d2)k δ。我们发现,上述方程的类型取决于k和m之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Diamond Bessel Klein Gordon operator related to linear differential equation
In this paper, first, we study the Green function of the Diamond Klein Gordon Bessel operator iterated k times. We give a sense of Distribution theory considering the properties of the convolution of the Green function. Finally, we solve the following equation ( ♦B + d2 )k u(x) = m ∑ r=0 cr ( ♦B + d2 )k δ. It was found that the type of above equation depend on the relationship between the value k and m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Sciences and Applications
Journal of Nonlinear Sciences and Applications MATHEMATICS, APPLIED-MATHEMATICS
自引率
0.00%
发文量
11
期刊介绍: The Journal of Nonlinear Science and Applications (JNSA) (print: ISSN 2008-1898 online: ISSN 2008-1901) is an international journal which provides very fast publication of original research papers in the fields of nonlinear analysis. Journal of Nonlinear Science and Applications is a journal that aims to unite and stimulate mathematical research community. It publishes original research papers and survey articles on all areas of nonlinear analysis and theoretical applied nonlinear analysis. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics. Manuscripts are invited from academicians, research students, and scientists for publication consideration. Papers are accepted for editorial consideration through online submission with the understanding that they have not been published, submitted or accepted for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信