基于侧信道信息泄漏的逆向工程卷积神经网络

Weizhe Hua, Zhiru Zhang, G. Suh
{"title":"基于侧信道信息泄漏的逆向工程卷积神经网络","authors":"Weizhe Hua, Zhiru Zhang, G. Suh","doi":"10.1145/3195970.3196105","DOIUrl":null,"url":null,"abstract":"A convolutional neural network (CNN) model represents a crucial piece of intellectual property in many applications. Revealing its structure or weights would leak confidential information. In this paper we present novel reverse-engineering attacks on CNNs running on a hardware accelerator, where an adversary can feed inputs to the accelerator and observe the resulting off-chip memory accesses. Our study shows that even with data encryption, the adversary can infer the underlying network structure by exploiting the memory and timing side-channels. We further identify the information leakage on the values of weights when a CNN accelerator performs dynamic zero pruning for off-chip memory accesses. Overall, this work reveals the importance of hiding off-chip memory access pattern to truly protect confidential CNN models.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"50 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"202","resultStr":"{\"title\":\"Reverse Engineering Convolutional Neural Networks Through Side-channel Information Leaks\",\"authors\":\"Weizhe Hua, Zhiru Zhang, G. Suh\",\"doi\":\"10.1145/3195970.3196105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A convolutional neural network (CNN) model represents a crucial piece of intellectual property in many applications. Revealing its structure or weights would leak confidential information. In this paper we present novel reverse-engineering attacks on CNNs running on a hardware accelerator, where an adversary can feed inputs to the accelerator and observe the resulting off-chip memory accesses. Our study shows that even with data encryption, the adversary can infer the underlying network structure by exploiting the memory and timing side-channels. We further identify the information leakage on the values of weights when a CNN accelerator performs dynamic zero pruning for off-chip memory accesses. Overall, this work reveals the importance of hiding off-chip memory access pattern to truly protect confidential CNN models.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"50 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"202\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 202

摘要

卷积神经网络(CNN)模型在许多应用中都是知识产权的重要组成部分。泄露其结构或重量将泄露机密信息。在本文中,我们提出了一种新的针对运行在硬件加速器上的cnn的逆向工程攻击,攻击者可以向加速器提供输入并观察由此产生的片外存储器访问。我们的研究表明,即使使用数据加密,攻击者也可以通过利用内存和定时侧信道来推断潜在的网络结构。我们进一步确定了当CNN加速器对片外存储器访问执行动态零修剪时,权值上的信息泄漏。总的来说,这项工作揭示了隐藏片外存储器访问模式对于真正保护机密CNN模型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reverse Engineering Convolutional Neural Networks Through Side-channel Information Leaks
A convolutional neural network (CNN) model represents a crucial piece of intellectual property in many applications. Revealing its structure or weights would leak confidential information. In this paper we present novel reverse-engineering attacks on CNNs running on a hardware accelerator, where an adversary can feed inputs to the accelerator and observe the resulting off-chip memory accesses. Our study shows that even with data encryption, the adversary can infer the underlying network structure by exploiting the memory and timing side-channels. We further identify the information leakage on the values of weights when a CNN accelerator performs dynamic zero pruning for off-chip memory accesses. Overall, this work reveals the importance of hiding off-chip memory access pattern to truly protect confidential CNN models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信