{"title":"关于q$-等单调变形和q$-Nekrasov函数","authors":"H. Nagoya","doi":"10.3842/SIGMA.2021.050","DOIUrl":null,"url":null,"abstract":"We construct a fundamental system of a $q$-difference Lax pair of rank $N$ in terms of 5d Nekrasov functions with $q=t$. Our fundamental system degenerates by the limit $q\\to 1$ to a fundamental system of a differential Lax pair, which yields the Fuji-Suzuki-Tsuda system. We introduce tau functions of our system as Fourier transforms of 5d Nekrasov functions. Using asymptotic expansions of the fundamental system at $0$ and $\\infty$, we obtain several determinantal identities of the tau functions.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On $q$-isomonodromic deformations and $q$-Nekrasov functions\",\"authors\":\"H. Nagoya\",\"doi\":\"10.3842/SIGMA.2021.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a fundamental system of a $q$-difference Lax pair of rank $N$ in terms of 5d Nekrasov functions with $q=t$. Our fundamental system degenerates by the limit $q\\\\to 1$ to a fundamental system of a differential Lax pair, which yields the Fuji-Suzuki-Tsuda system. We introduce tau functions of our system as Fourier transforms of 5d Nekrasov functions. Using asymptotic expansions of the fundamental system at $0$ and $\\\\infty$, we obtain several determinantal identities of the tau functions.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2021.050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On $q$-isomonodromic deformations and $q$-Nekrasov functions
We construct a fundamental system of a $q$-difference Lax pair of rank $N$ in terms of 5d Nekrasov functions with $q=t$. Our fundamental system degenerates by the limit $q\to 1$ to a fundamental system of a differential Lax pair, which yields the Fuji-Suzuki-Tsuda system. We introduce tau functions of our system as Fourier transforms of 5d Nekrasov functions. Using asymptotic expansions of the fundamental system at $0$ and $\infty$, we obtain several determinantal identities of the tau functions.