{"title":"在R中使用lmeresampler引导聚类数据","authors":"A. Loy, J. Korobova","doi":"10.32614/rj-2023-015","DOIUrl":null,"url":null,"abstract":"Linear mixed-effects models are commonly used to analyze clustered data structures. There are numerous packages to fit these models in R and conduct likelihood-based inference. The implementation of resampling-based procedures for inference are more limited. In this paper, we introduce the lmeresampler package for bootstrapping nested linear mixed-effects models fit via lme4 or nlme. Bootstrap estimation allows for bias correction, adjusted standard errors and confidence intervals for small samples sizes and when distributional assumptions break down. We will also illustrate how bootstrap resampling can be used to diagnose this model class. In addition, lmeresampler makes it easy to construct interval estimates of functions of model parameters.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"33 1","pages":"103-120"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bootstrapping Clustered Data in R using lmeresampler\",\"authors\":\"A. Loy, J. Korobova\",\"doi\":\"10.32614/rj-2023-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear mixed-effects models are commonly used to analyze clustered data structures. There are numerous packages to fit these models in R and conduct likelihood-based inference. The implementation of resampling-based procedures for inference are more limited. In this paper, we introduce the lmeresampler package for bootstrapping nested linear mixed-effects models fit via lme4 or nlme. Bootstrap estimation allows for bias correction, adjusted standard errors and confidence intervals for small samples sizes and when distributional assumptions break down. We will also illustrate how bootstrap resampling can be used to diagnose this model class. In addition, lmeresampler makes it easy to construct interval estimates of functions of model parameters.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"33 1\",\"pages\":\"103-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bootstrapping Clustered Data in R using lmeresampler
Linear mixed-effects models are commonly used to analyze clustered data structures. There are numerous packages to fit these models in R and conduct likelihood-based inference. The implementation of resampling-based procedures for inference are more limited. In this paper, we introduce the lmeresampler package for bootstrapping nested linear mixed-effects models fit via lme4 or nlme. Bootstrap estimation allows for bias correction, adjusted standard errors and confidence intervals for small samples sizes and when distributional assumptions break down. We will also illustrate how bootstrap resampling can be used to diagnose this model class. In addition, lmeresampler makes it easy to construct interval estimates of functions of model parameters.