Edo Roth, Karan Newatia, Ke Zhong, Sebastian Angel, Andreas Haeberlen
{"title":"菌丝体:具有差分隐私的大规模分布式图查询","authors":"Edo Roth, Karan Newatia, Ke Zhong, Sebastian Angel, Andreas Haeberlen","doi":"10.1145/3477132.3483585","DOIUrl":null,"url":null,"abstract":"This paper introduces Mycelium, the first system to process differentially private queries over large graphs that are distributed across millions of user devices. Such graphs occur, for instance, when tracking the spread of diseases or malware. Today, the only practical way to query such graphs is to upload them to a central aggregator, which requires a great deal of trust from users and rules out certain types of studies entirely. With Mycelium, users' private data never leaves their personal devices unencrypted, and each user receives strong privacy guarantees. Mycelium does require the help of a central aggregator with access to a data center, but the aggregator merely facilitates the computation by providing bandwidth and computation power; it never learns the topology of the graph or the underlying data. Mycelium accomplishes this with a combination of homomorphic encryption, a verifiable secret redistribution scheme, and a mix network based on telescoping circuits. Our evaluation shows that Mycelium can answer a range of different questions from the medical literature with millions of devices.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Mycelium: Large-Scale Distributed Graph Queries with Differential Privacy\",\"authors\":\"Edo Roth, Karan Newatia, Ke Zhong, Sebastian Angel, Andreas Haeberlen\",\"doi\":\"10.1145/3477132.3483585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Mycelium, the first system to process differentially private queries over large graphs that are distributed across millions of user devices. Such graphs occur, for instance, when tracking the spread of diseases or malware. Today, the only practical way to query such graphs is to upload them to a central aggregator, which requires a great deal of trust from users and rules out certain types of studies entirely. With Mycelium, users' private data never leaves their personal devices unencrypted, and each user receives strong privacy guarantees. Mycelium does require the help of a central aggregator with access to a data center, but the aggregator merely facilitates the computation by providing bandwidth and computation power; it never learns the topology of the graph or the underlying data. Mycelium accomplishes this with a combination of homomorphic encryption, a verifiable secret redistribution scheme, and a mix network based on telescoping circuits. Our evaluation shows that Mycelium can answer a range of different questions from the medical literature with millions of devices.\",\"PeriodicalId\":38935,\"journal\":{\"name\":\"Operating Systems Review (ACM)\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operating Systems Review (ACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477132.3483585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477132.3483585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Mycelium: Large-Scale Distributed Graph Queries with Differential Privacy
This paper introduces Mycelium, the first system to process differentially private queries over large graphs that are distributed across millions of user devices. Such graphs occur, for instance, when tracking the spread of diseases or malware. Today, the only practical way to query such graphs is to upload them to a central aggregator, which requires a great deal of trust from users and rules out certain types of studies entirely. With Mycelium, users' private data never leaves their personal devices unencrypted, and each user receives strong privacy guarantees. Mycelium does require the help of a central aggregator with access to a data center, but the aggregator merely facilitates the computation by providing bandwidth and computation power; it never learns the topology of the graph or the underlying data. Mycelium accomplishes this with a combination of homomorphic encryption, a verifiable secret redistribution scheme, and a mix network based on telescoping circuits. Our evaluation shows that Mycelium can answer a range of different questions from the medical literature with millions of devices.
期刊介绍:
Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.