基于听觉模型的小波包语音增强新算法

Wang Na, Zheng De-zhong, Xu Shuang, Zhang Shuqing
{"title":"基于听觉模型的小波包语音增强新算法","authors":"Wang Na, Zheng De-zhong, Xu Shuang, Zhang Shuqing","doi":"10.1109/CSSE.2008.1159","DOIUrl":null,"url":null,"abstract":"Human auditory has non-linear characteristics, while wavelet packet transform (WPT) has flexible analysis ability to time-frequency property so that it is more compatible to simulate the human auditory model. In this paper, human auditory model is analyzed, after which a new algorithm for speech enhancement using node-threshold wavelet packet transform based on bark-scaled decomposition is established, multi-resolution singular spectral entropy method is applied to estimate the node noise, and uses soft threshold to deal wavelet transform coefficient. The experiments show that this algorithm is valid on various noise conditions, especially for color noise and non-stationary noise conditions.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"69 1","pages":"1000-1003"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Algorithm for Speech Enhancement Using Wavelet Packet Transform Based on Auditory Model\",\"authors\":\"Wang Na, Zheng De-zhong, Xu Shuang, Zhang Shuqing\",\"doi\":\"10.1109/CSSE.2008.1159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human auditory has non-linear characteristics, while wavelet packet transform (WPT) has flexible analysis ability to time-frequency property so that it is more compatible to simulate the human auditory model. In this paper, human auditory model is analyzed, after which a new algorithm for speech enhancement using node-threshold wavelet packet transform based on bark-scaled decomposition is established, multi-resolution singular spectral entropy method is applied to estimate the node noise, and uses soft threshold to deal wavelet transform coefficient. The experiments show that this algorithm is valid on various noise conditions, especially for color noise and non-stationary noise conditions.\",\"PeriodicalId\":6460,\"journal\":{\"name\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"69 1\",\"pages\":\"1000-1003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSSE.2008.1159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSSE.2008.1159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人类听觉具有非线性特征,而小波包变换(WPT)对时频特性具有灵活的分析能力,使其更适合模拟人类听觉模型。在分析人类听觉模型的基础上,建立了基于树皮尺度分解的节点阈值小波包变换语音增强算法,采用多分辨率奇异谱熵法估计节点噪声,并采用软阈值法处理小波变换系数。实验表明,该算法在各种噪声条件下都是有效的,特别是在彩色噪声和非平稳噪声条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Algorithm for Speech Enhancement Using Wavelet Packet Transform Based on Auditory Model
Human auditory has non-linear characteristics, while wavelet packet transform (WPT) has flexible analysis ability to time-frequency property so that it is more compatible to simulate the human auditory model. In this paper, human auditory model is analyzed, after which a new algorithm for speech enhancement using node-threshold wavelet packet transform based on bark-scaled decomposition is established, multi-resolution singular spectral entropy method is applied to estimate the node noise, and uses soft threshold to deal wavelet transform coefficient. The experiments show that this algorithm is valid on various noise conditions, especially for color noise and non-stationary noise conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信