量子逻辑熵:基本原理和一般性质

4open Pub Date : 2021-08-05 DOI:10.1051/fopen/2021005
B. Tamir, Ismael Lucas De Paiva, Zohar Schwartzman-Nowik, E. Cohen
{"title":"量子逻辑熵:基本原理和一般性质","authors":"B. Tamir, Ismael Lucas De Paiva, Zohar Schwartzman-Nowik, E. Cohen","doi":"10.1051/fopen/2021005","DOIUrl":null,"url":null,"abstract":"Logical entropy gives a measure, in the sense of measure theory, of the distinctions of a given partition of a set, an idea that can be naturally generalized to classical probability distributions. Here, we analyze how this fundamental concept and other related definitions can be applied to the study of quantum systems with the use of quantum logical entropy. Moreover, we prove several properties of this entropy for generic density matrices that may be relevant to various areas of quantum mechanics and quantum information. Furthermore, we extend the notion of quantum logical entropy to post-selected systems.","PeriodicalId":6841,"journal":{"name":"4open","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantum logical entropy: fundamentals and general properties\",\"authors\":\"B. Tamir, Ismael Lucas De Paiva, Zohar Schwartzman-Nowik, E. Cohen\",\"doi\":\"10.1051/fopen/2021005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logical entropy gives a measure, in the sense of measure theory, of the distinctions of a given partition of a set, an idea that can be naturally generalized to classical probability distributions. Here, we analyze how this fundamental concept and other related definitions can be applied to the study of quantum systems with the use of quantum logical entropy. Moreover, we prove several properties of this entropy for generic density matrices that may be relevant to various areas of quantum mechanics and quantum information. Furthermore, we extend the notion of quantum logical entropy to post-selected systems.\",\"PeriodicalId\":6841,\"journal\":{\"name\":\"4open\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/fopen/2021005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/fopen/2021005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

逻辑熵给出了一个测度,在测度论的意义上,一个集合的给定分区的区别,这个想法可以很自然地推广到经典概率分布。在这里,我们分析了如何使用量子逻辑熵将这个基本概念和其他相关定义应用于量子系统的研究。此外,我们证明了该熵的几个性质,可能与量子力学和量子信息的各个领域有关的一般密度矩阵。此外,我们将量子逻辑熵的概念扩展到后选择系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum logical entropy: fundamentals and general properties
Logical entropy gives a measure, in the sense of measure theory, of the distinctions of a given partition of a set, an idea that can be naturally generalized to classical probability distributions. Here, we analyze how this fundamental concept and other related definitions can be applied to the study of quantum systems with the use of quantum logical entropy. Moreover, we prove several properties of this entropy for generic density matrices that may be relevant to various areas of quantum mechanics and quantum information. Furthermore, we extend the notion of quantum logical entropy to post-selected systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信