碳酸盐岩裂缝性油藏产油模拟

N. C. Furuvik, Britt M. E. Moldestad
{"title":"碳酸盐岩裂缝性油藏产油模拟","authors":"N. C. Furuvik, Britt M. E. Moldestad","doi":"10.3384/ECP17142842","DOIUrl":null,"url":null,"abstract":"CO2-EOR is an attractive method because of its potential to increase the oil production from matured oilfields, at the same time reduce the carbon footprint from the industrial sources. The field response to the CO2-EOR technique depends on the petrophysical properties of the reservoir. Carbonate reservoirs are characterized by low permeability and strong heterogeneity, causing significant amounts of water and CO2 to be recycled when CO2 is re-injected into the reservoir. Naturally fractured carbonate reservoirs have low oil production, high water production, early water breakthrough and high water cut. This study focuses on the oil production and the CO2 recycle ratio in naturally fractured carbonate reservoirs, including near-well simulations using the reservoir software Rocx in combination with OLGA. The simulations indicate that closing the fractured zone causes delayed water breakthrough and dramatically reduced water cut, resulting in improved oil recovery as well as lower production and separation costs.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":"248 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Oil Production in a Fractured Carbonate Reservoir\",\"authors\":\"N. C. Furuvik, Britt M. E. Moldestad\",\"doi\":\"10.3384/ECP17142842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CO2-EOR is an attractive method because of its potential to increase the oil production from matured oilfields, at the same time reduce the carbon footprint from the industrial sources. The field response to the CO2-EOR technique depends on the petrophysical properties of the reservoir. Carbonate reservoirs are characterized by low permeability and strong heterogeneity, causing significant amounts of water and CO2 to be recycled when CO2 is re-injected into the reservoir. Naturally fractured carbonate reservoirs have low oil production, high water production, early water breakthrough and high water cut. This study focuses on the oil production and the CO2 recycle ratio in naturally fractured carbonate reservoirs, including near-well simulations using the reservoir software Rocx in combination with OLGA. The simulations indicate that closing the fractured zone causes delayed water breakthrough and dramatically reduced water cut, resulting in improved oil recovery as well as lower production and separation costs.\",\"PeriodicalId\":56990,\"journal\":{\"name\":\"建模与仿真(英文)\",\"volume\":\"248 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"建模与仿真(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3384/ECP17142842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3384/ECP17142842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

CO2-EOR是一种有吸引力的方法,因为它有可能增加成熟油田的石油产量,同时减少工业来源的碳足迹。对CO2-EOR技术的现场响应取决于储层的岩石物理性质。碳酸盐岩储层具有渗透性低、非均质性强的特点,当向储层重新注入二氧化碳时,会产生大量的水和二氧化碳循环。碳酸盐岩天然裂缝性油藏具有低产油量、高含水、早见水、高含水的特点。本研究的重点是天然裂缝型碳酸盐岩储层的产油量和二氧化碳循环率,包括使用油藏软件Rocx结合OLGA进行近井模拟。模拟结果表明,关闭裂缝带可以延迟水侵,显著降低含水率,从而提高采收率,降低生产和分离成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Oil Production in a Fractured Carbonate Reservoir
CO2-EOR is an attractive method because of its potential to increase the oil production from matured oilfields, at the same time reduce the carbon footprint from the industrial sources. The field response to the CO2-EOR technique depends on the petrophysical properties of the reservoir. Carbonate reservoirs are characterized by low permeability and strong heterogeneity, causing significant amounts of water and CO2 to be recycled when CO2 is re-injected into the reservoir. Naturally fractured carbonate reservoirs have low oil production, high water production, early water breakthrough and high water cut. This study focuses on the oil production and the CO2 recycle ratio in naturally fractured carbonate reservoirs, including near-well simulations using the reservoir software Rocx in combination with OLGA. The simulations indicate that closing the fractured zone causes delayed water breakthrough and dramatically reduced water cut, resulting in improved oil recovery as well as lower production and separation costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信