具有幂权的分数Sobolev空间

Michał Kijaczko
{"title":"具有幂权的分数Sobolev空间","authors":"Michał Kijaczko","doi":"10.2422/2036-2145.202112_002","DOIUrl":null,"url":null,"abstract":". We investigate the form of the closure of the smooth, compactly supported functions C ∞ c (Ω) in the weighted fractional Sobolev space W s,p ; w,v (Ω) for bounded Ω . We focus on the weights w, v being powers of the distance to the boundary of the domain. Our results depend on the lower and upper Assouad codimension of the boundary of Ω . For such weights we also prove the comparability between the full weighted fractional Gagliardo seminorm and the truncated one.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fractional Sobolev spaces with power weights\",\"authors\":\"Michał Kijaczko\",\"doi\":\"10.2422/2036-2145.202112_002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We investigate the form of the closure of the smooth, compactly supported functions C ∞ c (Ω) in the weighted fractional Sobolev space W s,p ; w,v (Ω) for bounded Ω . We focus on the weights w, v being powers of the distance to the boundary of the domain. Our results depend on the lower and upper Assouad codimension of the boundary of Ω . For such weights we also prove the comparability between the full weighted fractional Gagliardo seminorm and the truncated one.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202112_002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202112_002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

. 研究了加权分数Sobolev空间中光滑紧支撑函数C∞C (Ω)的闭包形式;W v (Ω)对于有界的Ω。我们关注权重w, v是到定义域边界距离的幂。我们的结果依赖于Ω边界的上下协维。对于这些权值,我们还证明了满权分数型Gagliardo半模与截断半模的可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Sobolev spaces with power weights
. We investigate the form of the closure of the smooth, compactly supported functions C ∞ c (Ω) in the weighted fractional Sobolev space W s,p ; w,v (Ω) for bounded Ω . We focus on the weights w, v being powers of the distance to the boundary of the domain. Our results depend on the lower and upper Assouad codimension of the boundary of Ω . For such weights we also prove the comparability between the full weighted fractional Gagliardo seminorm and the truncated one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信