{"title":"基于任意形式临界状态线的分数阶应力-剪胀方程","authors":"Yifei Sun, Jiancheng Zhang","doi":"10.5802/CRMECA.78","DOIUrl":null,"url":null,"abstract":"The original state-dependent fractional stress-dilatancy (FSD) equation for soils is developed based on the critical state lines (CSLs) with linear form. However, experimental evidences showed that the CSLs of soil in the p ′–q and e–p ′ planes could be both nonlinear as well due to significant material degradation. This note aims to propose a unified FSD equation for soils with arbitrary types of CSLs. Detailed derivations are provided. To validate the proposed FSD equation, a series of triaxial test results of ballast and rockfill are simulated.","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"69 1","pages":"167-178"},"PeriodicalIF":1.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractional stress-dilatancy equation based on critical state lines with arbitrary form\",\"authors\":\"Yifei Sun, Jiancheng Zhang\",\"doi\":\"10.5802/CRMECA.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The original state-dependent fractional stress-dilatancy (FSD) equation for soils is developed based on the critical state lines (CSLs) with linear form. However, experimental evidences showed that the CSLs of soil in the p ′–q and e–p ′ planes could be both nonlinear as well due to significant material degradation. This note aims to propose a unified FSD equation for soils with arbitrary types of CSLs. Detailed derivations are provided. To validate the proposed FSD equation, a series of triaxial test results of ballast and rockfill are simulated.\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"69 1\",\"pages\":\"167-178\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMECA.78\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/CRMECA.78","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Fractional stress-dilatancy equation based on critical state lines with arbitrary form
The original state-dependent fractional stress-dilatancy (FSD) equation for soils is developed based on the critical state lines (CSLs) with linear form. However, experimental evidences showed that the CSLs of soil in the p ′–q and e–p ′ planes could be both nonlinear as well due to significant material degradation. This note aims to propose a unified FSD equation for soils with arbitrary types of CSLs. Detailed derivations are provided. To validate the proposed FSD equation, a series of triaxial test results of ballast and rockfill are simulated.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.