基于自动神经网络的SVT/VT分类系统

D. Thomson, J. Soraghan, T. Durrani
{"title":"基于自动神经网络的SVT/VT分类系统","authors":"D. Thomson, J. Soraghan, T. Durrani","doi":"10.1109/CIC.1993.378436","DOIUrl":null,"url":null,"abstract":"Describes a novel automatic ECG rhythm analysis system for the problem of classifying between normal sinus rhythm (NSR), supraventricular tachycardia (SVT) and ventricular tachycardia (VT). The system comprises two stages-a preprocessing stage and a neural network based classification stage. The preprocessing stage performs feature vector extraction from multi-leaded ECG sources. Key temporal (morphological), spatial (inter-lead) and spectral (frequency) features are used to form the feature vectors. The neural network classifier comprises a multi-layer perceptron trained using the backpropagation algorithm. By fusing features from the spectral and temporal domains, 100% classification is again possible.<<ETX>>","PeriodicalId":20445,"journal":{"name":"Proceedings of Computers in Cardiology Conference","volume":"19 1","pages":"333-336"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An automatic neural-network based SVT/VT classification system\",\"authors\":\"D. Thomson, J. Soraghan, T. Durrani\",\"doi\":\"10.1109/CIC.1993.378436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a novel automatic ECG rhythm analysis system for the problem of classifying between normal sinus rhythm (NSR), supraventricular tachycardia (SVT) and ventricular tachycardia (VT). The system comprises two stages-a preprocessing stage and a neural network based classification stage. The preprocessing stage performs feature vector extraction from multi-leaded ECG sources. Key temporal (morphological), spatial (inter-lead) and spectral (frequency) features are used to form the feature vectors. The neural network classifier comprises a multi-layer perceptron trained using the backpropagation algorithm. By fusing features from the spectral and temporal domains, 100% classification is again possible.<<ETX>>\",\"PeriodicalId\":20445,\"journal\":{\"name\":\"Proceedings of Computers in Cardiology Conference\",\"volume\":\"19 1\",\"pages\":\"333-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Computers in Cardiology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.1993.378436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Computers in Cardiology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.1993.378436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对正常窦性心律(NSR)、室上性心动过速(SVT)和室性心动过速(VT)的分类问题,提出了一种新的心电节律自动分析系统。该系统包括两个阶段:预处理阶段和基于神经网络的分类阶段。预处理阶段从多导联心电源中提取特征向量。关键的时间(形态)、空间(引线间)和频谱(频率)特征被用来形成特征向量。神经网络分类器包括一个多层感知器,使用反向传播算法进行训练。通过融合光谱和时域的特征,100%的分类再次成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automatic neural-network based SVT/VT classification system
Describes a novel automatic ECG rhythm analysis system for the problem of classifying between normal sinus rhythm (NSR), supraventricular tachycardia (SVT) and ventricular tachycardia (VT). The system comprises two stages-a preprocessing stage and a neural network based classification stage. The preprocessing stage performs feature vector extraction from multi-leaded ECG sources. Key temporal (morphological), spatial (inter-lead) and spectral (frequency) features are used to form the feature vectors. The neural network classifier comprises a multi-layer perceptron trained using the backpropagation algorithm. By fusing features from the spectral and temporal domains, 100% classification is again possible.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信