A. Y. Wardaya, Freddy P. Zen, J. Kosasih, Triyanta Triyanta
{"title":"chen - simons - witten理论的微扰与非微扰方面","authors":"A. Y. Wardaya, Freddy P. Zen, J. Kosasih, Triyanta Triyanta","doi":"10.5614/itb.ijp.2008.19.1.4","DOIUrl":null,"url":null,"abstract":"We investigate a relation between non-perturbative and perturbative cases in the 2+1 dimensional Chern-Simons-Witten (CSW) theory for G = E6 gauge group. In the perturbative case, we calculate the vacuum expectation value (VEV) of an unknotted Wilson loop operator up to order 1/k3 (k is a coupling constant). The result above is proved to be identical to the polynomial invariant E0 (ρ) in the non-perturbative case at the same order of expansion.","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perturbative and Non-perturbative Aspects of the Chern-Simons-Witten Theory\",\"authors\":\"A. Y. Wardaya, Freddy P. Zen, J. Kosasih, Triyanta Triyanta\",\"doi\":\"10.5614/itb.ijp.2008.19.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a relation between non-perturbative and perturbative cases in the 2+1 dimensional Chern-Simons-Witten (CSW) theory for G = E6 gauge group. In the perturbative case, we calculate the vacuum expectation value (VEV) of an unknotted Wilson loop operator up to order 1/k3 (k is a coupling constant). The result above is proved to be identical to the polynomial invariant E0 (ρ) in the non-perturbative case at the same order of expansion.\",\"PeriodicalId\":13535,\"journal\":{\"name\":\"Indonesian Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itb.ijp.2008.19.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2008.19.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perturbative and Non-perturbative Aspects of the Chern-Simons-Witten Theory
We investigate a relation between non-perturbative and perturbative cases in the 2+1 dimensional Chern-Simons-Witten (CSW) theory for G = E6 gauge group. In the perturbative case, we calculate the vacuum expectation value (VEV) of an unknotted Wilson loop operator up to order 1/k3 (k is a coupling constant). The result above is proved to be identical to the polynomial invariant E0 (ρ) in the non-perturbative case at the same order of expansion.