chen - simons - witten理论的微扰与非微扰方面

A. Y. Wardaya, Freddy P. Zen, J. Kosasih, Triyanta Triyanta
{"title":"chen - simons - witten理论的微扰与非微扰方面","authors":"A. Y. Wardaya, Freddy P. Zen, J. Kosasih, Triyanta Triyanta","doi":"10.5614/itb.ijp.2008.19.1.4","DOIUrl":null,"url":null,"abstract":"We investigate a relation between non-perturbative and perturbative cases in the 2+1 dimensional Chern-Simons-Witten (CSW) theory for G = E6 gauge group. In the perturbative case, we calculate the vacuum expectation value (VEV) of an unknotted Wilson loop operator up to order 1/k3 (k is a coupling constant). The result above is proved to be identical to the polynomial invariant E0 (ρ) in the non-perturbative case at the same order of expansion.","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perturbative and Non-perturbative Aspects of the Chern-Simons-Witten Theory\",\"authors\":\"A. Y. Wardaya, Freddy P. Zen, J. Kosasih, Triyanta Triyanta\",\"doi\":\"10.5614/itb.ijp.2008.19.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a relation between non-perturbative and perturbative cases in the 2+1 dimensional Chern-Simons-Witten (CSW) theory for G = E6 gauge group. In the perturbative case, we calculate the vacuum expectation value (VEV) of an unknotted Wilson loop operator up to order 1/k3 (k is a coupling constant). The result above is proved to be identical to the polynomial invariant E0 (ρ) in the non-perturbative case at the same order of expansion.\",\"PeriodicalId\":13535,\"journal\":{\"name\":\"Indonesian Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itb.ijp.2008.19.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2008.19.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了G = E6规范群的2+1维Chern-Simons-Witten (CSW)理论中非摄动和摄动情况之间的关系。在微扰情况下,我们计算了解结威尔逊环算子的真空期望值(VEV),最高可达1/k3阶(k是耦合常数)。在相同的展开阶下,证明了上述结果与多项式不变量E0 (ρ)在非扰动情况下是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbative and Non-perturbative Aspects of the Chern-Simons-Witten Theory
We investigate a relation between non-perturbative and perturbative cases in the 2+1 dimensional Chern-Simons-Witten (CSW) theory for G = E6 gauge group. In the perturbative case, we calculate the vacuum expectation value (VEV) of an unknotted Wilson loop operator up to order 1/k3 (k is a coupling constant). The result above is proved to be identical to the polynomial invariant E0 (ρ) in the non-perturbative case at the same order of expansion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信