求解常微分方程初值问题的有理插值方法

Anetor Osemenkhian
{"title":"求解常微分方程初值问题的有理插值方法","authors":"Anetor Osemenkhian","doi":"10.1016/j.jnnms.2014.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we designed Rational Interpolation Method for solving Ordinary Differential Equations (ODES) and Stiff initial value problems (IVPs).</p><p>This was achieved by considering the Rational Interpolation Formula. <span><span><span><math><msub><mrow><mi>y</mi></mrow><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><msub><mrow><mi>U</mi></mrow><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><mfrac><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow><mrow><mn>1</mn><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>6</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>6</mn></mrow></msup></mrow></mfrac><mtext>,</mtext></math></span></span></span> satisfying <span><math><mi>U</mi><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>,</mo><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></math></span>.</p><p>We also implemented <span><math><mi>k</mi><mo>=</mo><mn>6</mn></math></span> in Aashikpelokhai (1991) class of rational integration formulas given by <span><span><span><math><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mfrac><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mn>5</mn></mrow></munderover><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup></mrow><mrow><mn>1</mn><mo>+</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mn>6</mn></mrow></munderover><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup></mrow></mfrac></math></span></span></span> where, <span><span><span><span><math><mtext><mglyph></mglyph></mtext></math></span></span><span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mfrac><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>j</mi></mrow></munderover><msup><mrow><mi>h</mi></mrow><mrow><mrow><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo></mrow></mrow></msubsup></mrow><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>j</mi></mrow></munderover><mrow><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo></mrow><mi>!</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mrow><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo></mrow></mrow></msubsup></mrow></mfrac><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msub><mtext>,</mtext><mspace></mspace><mi>j</mi><mo>=</mo><mn>1</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mn>5</mn><mtext>.</mtext></math></span></span></span></span> The results as analyzed with the computer show that the rational interpolation method copes favorably well with ordinary differential equations and stiff initial value problems.</p></div>","PeriodicalId":17275,"journal":{"name":"Journal of the Nigerian Mathematical Society","volume":"34 1","pages":"Pages 83-93"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jnnms.2014.05.001","citationCount":"2","resultStr":"{\"title\":\"Rational interpolation method for solving initial value problems (IVPs) in ordinary differential equations\",\"authors\":\"Anetor Osemenkhian\",\"doi\":\"10.1016/j.jnnms.2014.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we designed Rational Interpolation Method for solving Ordinary Differential Equations (ODES) and Stiff initial value problems (IVPs).</p><p>This was achieved by considering the Rational Interpolation Formula. <span><span><span><math><msub><mrow><mi>y</mi></mrow><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><msub><mrow><mi>U</mi></mrow><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><mfrac><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow><mrow><mn>1</mn><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>6</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>6</mn></mrow></msup></mrow></mfrac><mtext>,</mtext></math></span></span></span> satisfying <span><math><mi>U</mi><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>,</mo><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></math></span>.</p><p>We also implemented <span><math><mi>k</mi><mo>=</mo><mn>6</mn></math></span> in Aashikpelokhai (1991) class of rational integration formulas given by <span><span><span><math><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mfrac><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mn>5</mn></mrow></munderover><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup></mrow><mrow><mn>1</mn><mo>+</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mn>6</mn></mrow></munderover><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup></mrow></mfrac></math></span></span></span> where, <span><span><span><span><math><mtext><mglyph></mglyph></mtext></math></span></span><span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mfrac><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>j</mi></mrow></munderover><msup><mrow><mi>h</mi></mrow><mrow><mrow><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo></mrow></mrow></msubsup></mrow><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>j</mi></mrow></munderover><mrow><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo></mrow><mi>!</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mrow><mo>(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo></mrow></mrow></msubsup></mrow></mfrac><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msub><mtext>,</mtext><mspace></mspace><mi>j</mi><mo>=</mo><mn>1</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mn>5</mn><mtext>.</mtext></math></span></span></span></span> The results as analyzed with the computer show that the rational interpolation method copes favorably well with ordinary differential equations and stiff initial value problems.</p></div>\",\"PeriodicalId\":17275,\"journal\":{\"name\":\"Journal of the Nigerian Mathematical Society\",\"volume\":\"34 1\",\"pages\":\"Pages 83-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jnnms.2014.05.001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0189896514000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0189896514000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文设计了求解常微分方程和刚性初值问题的有理插值方法。这是通过考虑有理插值公式实现的。y(x)=U(x)=P0+P1x+P2x2+P3x3+p4x4+P5x51+q1x+q2x2+q3x3+q4x4+q5x5+q6x6,满足U(Xn+i)=yn+i,i=0,1,2,3,4,5,6。我们还在Aashikpelokhai(1991)的一类有理积分公式中实现了k=6: yn+1=∑i=05piXn+1i1+∑i=16qiXn+1i,其中,Pj=∑i=1jh(j+1−i)yn(j+1−i)∑i=1j(j+1−i)!Xn+1(j+1−i)qi +ynqj,j=1(1)5。计算机分析结果表明,有理插值法能较好地处理常微分方程和刚性初值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational interpolation method for solving initial value problems (IVPs) in ordinary differential equations

In this paper we designed Rational Interpolation Method for solving Ordinary Differential Equations (ODES) and Stiff initial value problems (IVPs).

This was achieved by considering the Rational Interpolation Formula. y(x)=U(x)=P0+P1x+P2x2+P3x3+p4x4+P5x51+q1x+q2x2+q3x3+q4x4+q5x5+q6x6, satisfying U(Xn+i)=yn+i,i=0,1,2,3,4,5,6.

We also implemented k=6 in Aashikpelokhai (1991) class of rational integration formulas given by yn+1=i=05piXn+1i1+i=16qiXn+1i where, Pj=i=1jh(j+1i)yn(j+1i)i=1j(j+1i)!Xn+1(j+1i)qi1+ynqj,j=1(1)5. The results as analyzed with the computer show that the rational interpolation method copes favorably well with ordinary differential equations and stiff initial value problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信