γ -钛铝合金对小缺陷的疲劳敏感性

M. Filippini, S. Beretta, L. Patriarca, G. Pasquero, S. Sabbadini
{"title":"γ -钛铝合金对小缺陷的疲劳敏感性","authors":"M. Filippini, S. Beretta, L. Patriarca, G. Pasquero, S. Sabbadini","doi":"10.1520/JAI104293","DOIUrl":null,"url":null,"abstract":"The fatigue properties of a Ti-48Al-2Cr-2Nb alloy obtained by electron-beam melting (EBM) with a patented process has been examined by conducting high cycle fatigue tests performed at different R ratios at room temperature. Fatigue-crack propagation tests have been performed for the purpose of characterizing the fatigue-crack growth rate and threshold of the material. Additionally, specimens with artificially introduced defects have been fatigue tested with the objective of studying the growth behavior of small cracks. Artificial defects with different sizes have been generated in the gauge section of the specimens by electron-discharge machining (EDM). After EDM defects are produced, the specimens are pre-cracked in cyclic compression, so that small cracks can be generated at the root of the EDM starter defects. Fatigue tests are conducted by applying the staircase technique with the number of cycles of censored test (runout) fixed at 107 cycles. By employing the Murakami model for the calculation of the range of stress intensity factor, the threshold stress intensity factor range dependence on the loading ratio R and on the defect size is evaluated, highlighting the relevant parameters that govern the specific mechanisms of failure of the novel γ–TiAl alloy studied in the present work.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fatigue Sensitivity to Small Defects of a Gamma–Titanium–Aluminide Alloy\",\"authors\":\"M. Filippini, S. Beretta, L. Patriarca, G. Pasquero, S. Sabbadini\",\"doi\":\"10.1520/JAI104293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fatigue properties of a Ti-48Al-2Cr-2Nb alloy obtained by electron-beam melting (EBM) with a patented process has been examined by conducting high cycle fatigue tests performed at different R ratios at room temperature. Fatigue-crack propagation tests have been performed for the purpose of characterizing the fatigue-crack growth rate and threshold of the material. Additionally, specimens with artificially introduced defects have been fatigue tested with the objective of studying the growth behavior of small cracks. Artificial defects with different sizes have been generated in the gauge section of the specimens by electron-discharge machining (EDM). After EDM defects are produced, the specimens are pre-cracked in cyclic compression, so that small cracks can be generated at the root of the EDM starter defects. Fatigue tests are conducted by applying the staircase technique with the number of cycles of censored test (runout) fixed at 107 cycles. By employing the Murakami model for the calculation of the range of stress intensity factor, the threshold stress intensity factor range dependence on the loading ratio R and on the defect size is evaluated, highlighting the relevant parameters that govern the specific mechanisms of failure of the novel γ–TiAl alloy studied in the present work.\",\"PeriodicalId\":15057,\"journal\":{\"name\":\"Journal of Astm International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astm International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/JAI104293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI104293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

通过室温下不同R比的高周疲劳试验,研究了采用专利工艺电子束熔化法制备的Ti-48Al-2Cr-2Nb合金的疲劳性能。为了表征材料的疲劳裂纹扩展速率和阈值,进行了疲劳裂纹扩展试验。此外,人为引入缺陷的试样进行了疲劳试验,目的是研究小裂纹的扩展行为。利用电火花加工技术在试件的规范截面上产生了不同尺寸的人工缺陷。在产生电火花缺陷后,对试样进行循环压缩预裂,使电火花启动缺陷根部产生小裂纹。采用阶梯法进行疲劳试验,截尾试验次数(跳动)固定为107次。采用Murakami模型计算应力强度因子范围,评估了阈值应力强度因子范围与加载比R和缺陷尺寸的依赖关系,突出了控制本文研究的新型γ-TiAl合金具体失效机制的相关参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue Sensitivity to Small Defects of a Gamma–Titanium–Aluminide Alloy
The fatigue properties of a Ti-48Al-2Cr-2Nb alloy obtained by electron-beam melting (EBM) with a patented process has been examined by conducting high cycle fatigue tests performed at different R ratios at room temperature. Fatigue-crack propagation tests have been performed for the purpose of characterizing the fatigue-crack growth rate and threshold of the material. Additionally, specimens with artificially introduced defects have been fatigue tested with the objective of studying the growth behavior of small cracks. Artificial defects with different sizes have been generated in the gauge section of the specimens by electron-discharge machining (EDM). After EDM defects are produced, the specimens are pre-cracked in cyclic compression, so that small cracks can be generated at the root of the EDM starter defects. Fatigue tests are conducted by applying the staircase technique with the number of cycles of censored test (runout) fixed at 107 cycles. By employing the Murakami model for the calculation of the range of stress intensity factor, the threshold stress intensity factor range dependence on the loading ratio R and on the defect size is evaluated, highlighting the relevant parameters that govern the specific mechanisms of failure of the novel γ–TiAl alloy studied in the present work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信