多目标优化洗牌蛙跃双聚类

Junwan Liu, Xiaohua Hu, Zhoujun Li, Yiming Chen
{"title":"多目标优化洗牌蛙跃双聚类","authors":"Junwan Liu, Xiaohua Hu, Zhoujun Li, Yiming Chen","doi":"10.1109/BIBMW.2011.6112368","DOIUrl":null,"url":null,"abstract":"Biclustering of DNA microarray data that can mine significant patterns to help in understanding gene regulation and interactions. This is a classical multi-objective optimization problem (MOP). Recently, many researchers have developed stochastic search methods that mimic the efficient behavior of species such as ants, bees, birds and frogs, as a means to seek faster and more robust solutions to complex optimization problems. The particle swarm optimization(PSO) is a heuristics-based optimization approach simulating the movements of a bird flock finding food. The shuffled frog leaping algorithm (SFLA) is a population-based cooperative search metaphor combining the benefits of the local search of PSO and the global shuffled of information of the complex evolution technique. This paper introduces SFL algorithm to solve biclustering of microarray data, and proposes a novel multi-objective shuffled frog leaping biclustering(MOSFLB) algorithm to mine coherent patterns from microarray data. Experimental results on two real datasets show that our approach can effectively find significant biclusters of high quality.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"46 1","pages":"151-156"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multiobjective optizition shuffled frog-leaping biclustering\",\"authors\":\"Junwan Liu, Xiaohua Hu, Zhoujun Li, Yiming Chen\",\"doi\":\"10.1109/BIBMW.2011.6112368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biclustering of DNA microarray data that can mine significant patterns to help in understanding gene regulation and interactions. This is a classical multi-objective optimization problem (MOP). Recently, many researchers have developed stochastic search methods that mimic the efficient behavior of species such as ants, bees, birds and frogs, as a means to seek faster and more robust solutions to complex optimization problems. The particle swarm optimization(PSO) is a heuristics-based optimization approach simulating the movements of a bird flock finding food. The shuffled frog leaping algorithm (SFLA) is a population-based cooperative search metaphor combining the benefits of the local search of PSO and the global shuffled of information of the complex evolution technique. This paper introduces SFL algorithm to solve biclustering of microarray data, and proposes a novel multi-objective shuffled frog leaping biclustering(MOSFLB) algorithm to mine coherent patterns from microarray data. Experimental results on two real datasets show that our approach can effectively find significant biclusters of high quality.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"46 1\",\"pages\":\"151-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2011.6112368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

DNA微阵列数据的双聚类,可以挖掘重要的模式,以帮助理解基因调控和相互作用。这是一个经典的多目标优化问题。近年来,许多研究人员开发了模拟蚂蚁、蜜蜂、鸟类和青蛙等物种的有效行为的随机搜索方法,作为一种寻求复杂优化问题更快、更鲁棒解的手段。粒子群优化算法(PSO)是一种基于启发式算法的模拟鸟群觅食运动的优化方法。shuffle frog leapalgorithm (SFLA)是一种基于种群的协同搜索算法,结合了粒子群算法的局部搜索和复杂进化技术的全局信息重组的优点。引入SFL算法解决微阵列数据的双聚类问题,提出了一种新的多目标shuffle frog跳跃双聚类(MOSFLB)算法从微阵列数据中挖掘相干模式。在两个真实数据集上的实验结果表明,我们的方法可以有效地发现高质量的显著双聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective optizition shuffled frog-leaping biclustering
Biclustering of DNA microarray data that can mine significant patterns to help in understanding gene regulation and interactions. This is a classical multi-objective optimization problem (MOP). Recently, many researchers have developed stochastic search methods that mimic the efficient behavior of species such as ants, bees, birds and frogs, as a means to seek faster and more robust solutions to complex optimization problems. The particle swarm optimization(PSO) is a heuristics-based optimization approach simulating the movements of a bird flock finding food. The shuffled frog leaping algorithm (SFLA) is a population-based cooperative search metaphor combining the benefits of the local search of PSO and the global shuffled of information of the complex evolution technique. This paper introduces SFL algorithm to solve biclustering of microarray data, and proposes a novel multi-objective shuffled frog leaping biclustering(MOSFLB) algorithm to mine coherent patterns from microarray data. Experimental results on two real datasets show that our approach can effectively find significant biclusters of high quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信