{"title":"采用单芯片源进行超高带宽光纤数据传输","authors":"D. Moss","doi":"10.1117/12.2584014","DOIUrl":null,"url":null,"abstract":"\n We report world record high data transmission over standard optical fiber from a single optical source. We achieve a line rate of 44.2 Terabits per second (Tb/s) employing only the C-band at 1550nm, resulting in a spectral efficiency of 10.4 bits/s/Hz. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency that, together with an extremely low spacing of 48.9 GHz enables a very high coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. This work demonstrates the ability of optical micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Ultra-high bandwidth fiber-optic data transmission with a single chip source\",\"authors\":\"D. Moss\",\"doi\":\"10.1117/12.2584014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We report world record high data transmission over standard optical fiber from a single optical source. We achieve a line rate of 44.2 Terabits per second (Tb/s) employing only the C-band at 1550nm, resulting in a spectral efficiency of 10.4 bits/s/Hz. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency that, together with an extremely low spacing of 48.9 GHz enables a very high coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. This work demonstrates the ability of optical micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2584014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2584014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-high bandwidth fiber-optic data transmission with a single chip source
We report world record high data transmission over standard optical fiber from a single optical source. We achieve a line rate of 44.2 Terabits per second (Tb/s) employing only the C-band at 1550nm, resulting in a spectral efficiency of 10.4 bits/s/Hz. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency that, together with an extremely low spacing of 48.9 GHz enables a very high coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. This work demonstrates the ability of optical micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.