具有可变渗透率的达西方程的自适应体积或有限元图

Yves Achdou , Christine Bernardi
{"title":"具有可变渗透率的达西方程的自适应体积或有限元图","authors":"Yves Achdou ,&nbsp;Christine Bernardi","doi":"10.1016/S0764-4442(01)02071-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider Darcy's equations with variable permeability coefficient in a two- or three-dimensional domain. We propose a finite volume scheme, which turns out to be equivalent to a finite element problem, and we derive optimal a priori error estimates. We describe error indicators and prove that they provide an appropriate tool for mesh adaptivity, since estimates allow to compare them with the error.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 693-698"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02071-7","citationCount":"15","resultStr":"{\"title\":\"Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable\",\"authors\":\"Yves Achdou ,&nbsp;Christine Bernardi\",\"doi\":\"10.1016/S0764-4442(01)02071-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider Darcy's equations with variable permeability coefficient in a two- or three-dimensional domain. We propose a finite volume scheme, which turns out to be equivalent to a finite element problem, and we derive optimal a priori error estimates. We describe error indicators and prove that they provide an appropriate tool for mesh adaptivity, since estimates allow to compare them with the error.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 7\",\"pages\":\"Pages 693-698\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02071-7\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201020717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201020717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们在二维或三维范围内考虑具有变磁导率系数的达西方程。我们提出了一个有限体积方案,结果证明它相当于一个有限元问题,我们得到了最优的先验误差估计。我们描述了误差指标,并证明它们为网格自适应提供了适当的工具,因为估计允许将它们与误差进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable

We consider Darcy's equations with variable permeability coefficient in a two- or three-dimensional domain. We propose a finite volume scheme, which turns out to be equivalent to a finite element problem, and we derive optimal a priori error estimates. We describe error indicators and prove that they provide an appropriate tool for mesh adaptivity, since estimates allow to compare them with the error.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信