{"title":"具有可变渗透率的达西方程的自适应体积或有限元图","authors":"Yves Achdou , Christine Bernardi","doi":"10.1016/S0764-4442(01)02071-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider Darcy's equations with variable permeability coefficient in a two- or three-dimensional domain. We propose a finite volume scheme, which turns out to be equivalent to a finite element problem, and we derive optimal a priori error estimates. We describe error indicators and prove that they provide an appropriate tool for mesh adaptivity, since estimates allow to compare them with the error.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 693-698"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02071-7","citationCount":"15","resultStr":"{\"title\":\"Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable\",\"authors\":\"Yves Achdou , Christine Bernardi\",\"doi\":\"10.1016/S0764-4442(01)02071-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider Darcy's equations with variable permeability coefficient in a two- or three-dimensional domain. We propose a finite volume scheme, which turns out to be equivalent to a finite element problem, and we derive optimal a priori error estimates. We describe error indicators and prove that they provide an appropriate tool for mesh adaptivity, since estimates allow to compare them with the error.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 7\",\"pages\":\"Pages 693-698\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02071-7\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201020717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201020717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable
We consider Darcy's equations with variable permeability coefficient in a two- or three-dimensional domain. We propose a finite volume scheme, which turns out to be equivalent to a finite element problem, and we derive optimal a priori error estimates. We describe error indicators and prove that they provide an appropriate tool for mesh adaptivity, since estimates allow to compare them with the error.