广义幂级数的多重可和性

Pub Date : 2022-03-28 DOI:10.4153/s0008414x23000111
J. Rolin, Tamara Servi, P. Speissegger
{"title":"广义幂级数的多重可和性","authors":"J. Rolin, Tamara Servi, P. Speissegger","doi":"10.4153/s0008414x23000111","DOIUrl":null,"url":null,"abstract":"We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both $\\mathbb{R}_{\\mathcal{G}}$ and the reduct of $\\mathbb{R}_{\\mathrm{an}^*}$ generated by all convergent generalized power series with natural support; in particular, its expansion by the exponential function defines both the Gamma function on $(0,\\infty)$ and the Zeta function on $(1,\\infty)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MULTISUMMABILITY FOR GENERALIZED POWER SERIES\",\"authors\":\"J. Rolin, Tamara Servi, P. Speissegger\",\"doi\":\"10.4153/s0008414x23000111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both $\\\\mathbb{R}_{\\\\mathcal{G}}$ and the reduct of $\\\\mathbb{R}_{\\\\mathrm{an}^*}$ generated by all convergent generalized power series with natural support; in particular, its expansion by the exponential function defines both the Gamma function on $(0,\\\\infty)$ and the Zeta function on $(1,\\\\infty)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x23000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给出了具有自然支持的广义幂级数在正实数方向上的多重可和性,并用这些级数的所有多重和证明了实域展开的0极小性。该结构扩展了自然支持下所有收敛广义幂级数生成的$\mathbb{R}_{\mathcal{G}}$和$\mathbb{R}_{\mathrm{an}^*}$的约简;特别是,它的指数函数展开定义了$(0,\infty)$上的Gamma函数和$(1,\infty)$上的Zeta函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
MULTISUMMABILITY FOR GENERALIZED POWER SERIES
We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both $\mathbb{R}_{\mathcal{G}}$ and the reduct of $\mathbb{R}_{\mathrm{an}^*}$ generated by all convergent generalized power series with natural support; in particular, its expansion by the exponential function defines both the Gamma function on $(0,\infty)$ and the Zeta function on $(1,\infty)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信